Advertisement

Chunking in Turkish with Conditional Random Fields

  • Olcay Taner Yıldız
  • Ercan Solak
  • Razieh Ehsani
  • Onur Görgün
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9041)

Abstract

In this paper, we report our work on chunking in Turkish. We used the data that we generated by manually translating a subset of the Penn Treebank. We exploited the already available tags in the trees to automatically identify and label chunks in their Turkish translations. We used conditional random fields (CRF) to train a model over the annotated data. We report our results on different levels of chunk resolution.

Keywords

Noun Phrase Conditional Random Field Output Label Statistical Machine Translation Computational Linguistics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abney, S.: Parsing by chunks. In: Principle-Based Parsing, pp. 257–278. Kluwer Academic Publishers (1991)Google Scholar
  2. 2.
    Jurafsky, D., Martin, J.H.: Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition. Prentice Hall Series in Artificial Intelligence, 2 edn. Prentice Hall (2009)Google Scholar
  3. 3.
    Ramshaw, L.A., Marcus, M.P.: Text chunking using transformation-based learning. In: Third ACL Workshop on Very Large Corpora, pp. 82–94 (1995)Google Scholar
  4. 4.
    Kudo, T., Matsumoto, Y.: Chunking with support vector machines. In: Proceedings of the Second Meeting of the North American Chapter of the Association for Computational Linguistics on Language Technologies, NAACL 2001, pp. 1–8. Association for Computational Linguistics, Stroudsburg (2001)Google Scholar
  5. 5.
    Zhang, T., Damerau, F., Johnson, D.: Text chunking based on a generalization of winnow. J. Mach. Learn. Res. 2, 615–637 (2002)zbMATHGoogle Scholar
  6. 6.
    Tjong Kim Sang, E.F., Buchholz, S.: Introduction to the CoNLL-2000 shared task: Chunking. In: Proceedings of the 2Nd Workshop on Learning Language in Logic and the 4th Conference on Computational Natural Language Learning, ConLL 2000, pp. 127–132. Association for Computational Linguistics, Stroudsburg (2000)Google Scholar
  7. 7.
    Park, S.B., Zhang, B.T.: Text chunking by combining hand-crafted rules and memory-based learning. In: Proceedings of the 41st Annual Meeting on Association for Computational Linguistics, ACL 2003, vol. 1, pp. 497–504. Association for Computational Linguistics, Stroudsburg (2003)Google Scholar
  8. 8.
    Lee, Y.-H., Kim, M.-Y., Lee, J.-H.: Chunking using conditional random fields in korean texts. In: Dale, R., Wong, K.-F., Su, J., Kwong, O.Y. (eds.) IJCNLP 2005. LNCS (LNAI), vol. 3651, pp. 155–164. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Gune, H., Bapat, M., Khapra, M.M., Bhattacharyya, P.: Verbs are where all the action lies: Experiences of shallow parsing of a morphologically rich language. In: Proceedings of the 23rd International Conference on Computational Linguistics: Posters, COLING 2010, pp. 347–355. Association for Computational Linguistics, Stroudsburg (2010)Google Scholar
  10. 10.
    Chen, W., Zhang, Y., Isahara, H.: An empirical study of chinese chunking. In: Proceedings of the COLING/ACL on Main Conference Poster Sessions, COLING-ACL 2006, pp. 97–104. Association for Computational Linguistics, Stroudsburg (2006)Google Scholar
  11. 11.
    Sun, G.L., Huang, C.N., Wang, X.L., Xu, Z.M.: Chinese chunking based on maximum entropy markov models. International Journal of Computational Linguistics & Chinese Language Processing 11, 115–136 (2006)Google Scholar
  12. 12.
    Kutlu, M.: Noun phrase chunker for Turkish using dependency parser. Master’s thesis, Sabancı University (2010)Google Scholar
  13. 13.
    El-Kahlout, İ.D., Akın, A.A.: Turkish constituent chunking with morphological and contextual features. In: Gelbukh, A. (ed.) CICLing 2013, Part I. LNCS, vol. 7816, pp. 270–281. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  14. 14.
    Atalay, N.B., Oflazer, K., Say, B.: The annotation process in the Turkish treebank. In: 4th International Workshop on Linguistically Interpreted Corpora (2003)Google Scholar
  15. 15.
    Marcus, M.P., Marcinkiewicz, M.A., Santorini, B.: Building a large annotated corpus of English: The Penn treebank. Computational Linguistics 19, 313–330 (1993)Google Scholar
  16. 16.
    Kornfilt, J.: Turkish. Routledge (1997)Google Scholar
  17. 17.
    Yıldız, O.T., Solak, E., Görgün, O., Ehsani, R.: Constructing a Turkish-English parallel treebank. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, pp. 112–117. Association for Computational Linguistics, Baltimore (2014)Google Scholar
  18. 18.
    Sha, F., Pereira, F.: Shallow parsing with conditional random fields. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology, NAACL 2003, pp. 134–141. Association for Computational Linguistics, Stroudsburg (2003)Google Scholar
  19. 19.
    Lavergne, T., Cappé, O., Yvon, F.: Practical very large scale CRFs. In: Proceedings the 48th Annual Meeting of the Association for Computational Linguistics (ACL), pp. 504–513. Association for Computational Linguistics (2010)Google Scholar
  20. 20.
    Hakkani-Tur, D., Oflazer, K., Tür, G.: Statistical morphological disambiguation for agglutinative languages. Computers and the Humanities (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Olcay Taner Yıldız
    • 1
  • Ercan Solak
    • 1
  • Razieh Ehsani
    • 1
  • Onur Görgün
    • 1
    • 2
  1. 1.Işık UniversityIstanbulTurkey
  2. 2.Alcatel Lucent Teletaş Telekomünikasyon A.ŞIstanbulTurkey

Personalised recommendations