On the Existence of the Normal Form for Nonlinear Delay Systems

Part of the Advances in Delays and Dynamics book series (ADVSDD, volume 4)


The normal form is discussed for nonlinear systems affected by constant commensurate delays. Two different forms are argued. In particular, necessary and sufficient conditions are given under which a nonlinear time-delay system can be decomposed into a (weakly) observable subsystem and a non observable subsystem. Whenever such a decomposition exists, additional conditions are required to ensure the feedback linearization of the weakly observable subsystem. Finally, a full characterization is derived for the nonlinear time delay system to have an unobservable subsystem not directly affected by the input and a weakly observable subsystem which is linearizable by feedback. The performed analysis is carried out within a new geometric framework recently introduced in the literature.


  1. 1.
    Califano, C., Marquez-Martinez, L., Moog, C.H.: Extended lie brackets for nonlinear time-delay systems. IEEE Trans. Autom. Control 56(9), 2213–2218 (2011)Google Scholar
  2. 2.
    Califano, C., Marquez-Martinez, L., Moog, C.H.: Linearization of time-delay systems by input-output injection and output transformation. Automatica 49(6), 1932–1940 (2013)Google Scholar
  3. 3.
    Califano, C., Monaco, S., Normand-Cyrot, D.: On the discrete-time normal form. IEEE Trans. Autom. Control 43(11), 1654–1658 (1998)MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Califano, C., Moog, C.H.: De l’existence de la forme normale pour les systemes non lineaires a retards. In: Proceedings of Conference Internationale Francophone d’Automatique, pp. 37–42 (2012)Google Scholar
  5. 5.
    Califano, C., Moog, C.H.: Coordinates transformations in nonlinear time-delay systems. In: Proceedings of the 53rd IEEE Conference on Decision and Control, pp. 475–480 (2014)Google Scholar
  6. 6.
    Garate-Garcia, A., Marquez-Martinez, L., Cuesta-Garcia, J., Garcia-Ramirez, E.: A computer algebra system for analysis and control of nonlinear time-delay systems. Adv. Eng. Softw. 65, 138–148 (2013)CrossRefGoogle Scholar
  7. 7.
    Germani, A., Manes, C., Pepe, P.: Linearization of input-output mapping for nonlinear delay systems via static state feedback. In: Proceedings of the IEEE-IMACS Conference on Computer Engineering in System Applications, pp. 599–602 (1996)Google Scholar
  8. 8.
    Germani, A., Manes, C., Pepe, P.: Input-output linearization with delay cancellation for nonlinear delay systems: the problem of the internal stability. Int. J. Robust Nonlinear Control 13(9), 909–937 (2003)MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Gu, K., Kharitonov, V., Chen, J.: Stability of Time-Delay Systems. Birkhauser, Boston (2003)MATHCrossRefGoogle Scholar
  10. 10.
    Isidori, A.: Nonlinear Control Systems, 3rd edn. Springer, New York (1995)MATHCrossRefGoogle Scholar
  11. 11.
    Marquez-Martinez, L., Moog, C.H., Velasco-Villa, M.: Observability and observers for nonlinear systems with time delay. Kybernetika 38(4), 445–456 (2002)Google Scholar
  12. 12.
    Michiels, W., Niculescu, S-I.: Stability and Stabilization of Time-Delay Systems. An Eigen-value-Based Approach. SIAM, Philadelphia (2007). (Advances in Design and Control, 12 )Google Scholar
  13. 13.
    Oguchi, T.: A finite spectrum assignment for retarded non-linear systems and its solvability condition. Int. J. Control 80(6), 898–907 (2007)MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Pepe, P., Jiang, Z.-P.: A Lyapunov Krasovskii methodology for ISS and iISS of time-delay systems. Syst. Control Lett. 55(12), 1006–1014 (2006)Google Scholar
  15. 15.
    Xia, X., Marquez-Martinez, L., Zagalak, P., Moog, C.H.: Analysis of nonlinear time-delay systems using modules over non-commutative rings. Automatica 38(9), 1549–1555 (2002)Google Scholar
  16. 16.
    Zheng, G., Barbot, J., Boutat, D.: Identification of the delay parameter for nonlinear time-delay systems with unknown inputs. Automatica 49(6), 1755–1760 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria Informatica Automatica e Gestionale “Antonio Ruberti”Università di Roma La SapienzaRomeItaly
  2. 2.L’UNAM, IRCCyNUMR C.N.R.S. 6597Nantes Cedex 3France

Personalised recommendations