State Estimation and Control of Nonlinear Systems with Large and Variable Measurement Delays

Chapter
Part of the Advances in Delays and Dynamics book series (ADVSDD, volume 4)

Abstract

This chapter deals with the problem of output feedback control of nonlinear systems affected by time-varying measurement delay. A control law is presented, which is made of an observer-controller cascade where the controller is a classic state-linearizing scheme, and the observer is a high-gain observer of chain-type. It is shown that under suitable conditions on the system, the observer is globally exponentially convergent, and the replacement of the true state with the observer state in the control law results in an exponentially stabilizing feedback scheme. The main limitation with a single observer is the presence of a delay bound that depends on the Lipschitz constant of the nonlinear system. To overcome this limitation it is possible to resort to a chain of observers that, at the cost of a growing realization space and convergence time, can in principle allow to compensate any delay. This design is straightforward when the delay is known and constant but its extension to time-varying delays requires special attention, in particular when the delay is not continuous with respect to time, as it frequently happens in the applications. We therefore introduce a classification of delay functions with respect to the available output information and illustrate how to design the cascade of elementary observers to solve the state reconstruction problem. We also characterize the class of delay functions for which this approach fails to provide a viable implementation.

References

  1. 1.
    Ahmed-Ali, T., Cherrier, E., M’Saad, M.: Cascade high gain observers for nonlinear systemms with delayed output. In: Proceedings of the 48th Conference on Decision and Control, pp. 8226–8231 (2009)Google Scholar
  2. 2.
    Ahmed-Ali, T., Cherrier, E., Lamnabhi-Lagarrigue, F.: Cascade high gain predictor for a class of nonlinear systems. IEEE Trans. Autom. Control 57(1), 221–226 (2012)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Andrieu, V., Praly, L.: On the existence of a Kazantis-Kravaris/Luemberger observer. SIAM J. Control Optim. 45(2), 432–456 (2007)MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Byrnes, C.I., Isidori, A.: Nonlinear internal models for output regulation. IEEE Trans. Autom. Control 49(12), 2244–2247 (2004)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Cacace, F., Germani, A., Manes, C.: An observer for a class of nonlinear systems with time varying observation delay. Syst. Control Lett. 59(5), 305–312 (2010)MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Cacace, F., Germani, A., Manes, C.: An exponential observer with delay-dependant gain for a class of nonlinear systems with time-varying measurement delay. In: Proceedings of the IEEE Conference on Decision and Control, pp. 2364–2369 (2013)Google Scholar
  7. 7.
    Cacace, F., Germani, A., Manes, C.: A chain approach for state observation of a class of MIMO nonlinear systems with time-varying output delays. In: Proceedings of the 11th IFAC Workshop on Time-Delay Systems, pp. 541–546 (2013)Google Scholar
  8. 8.
    Cacace, F., Germani, A., Manes, C.: A chain observer for nonlinear systems with multiple time-varying measurement delays. SIAM J. Control Optim. 52(3), 1862–1885 (2014)MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Ciccarella, G., Dalla Mora, M., Germani, A.: A Luenberger-like observer for nonlinear systems. Int. J. Control 57(3), 537–556 (1993)Google Scholar
  10. 10.
    Dalla Mora, M., Germani, A., Manes, C.: Design of state observers from a drift-observability property. IEEE Transac. Autom. Control 45(8), 1536–1540 (2000)Google Scholar
  11. 11.
    Ding, Z.: Output feedback stabilization of systems with nonlinearity of unmeasured states. In: Proceedings of the IEEE Conference on Decision and Control, pp. 5414–5419 (2008)Google Scholar
  12. 12.
    Fridman, E.: Output regulation of nonlinear systems with delay. Syst. Control Lett. 50(2), 81–93 (2003)MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Germani, A., Manes, C., Pepe, P.: A new approach to state observation of nonlinear systems with delayed output. IEEE Trans. Autom. Control 47(1), 96–101 (2002)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Germani, A., Manes, C., Pepe, P.: Input-output linearization with delay cancellation for nonlinear delay systems: the problem of the internal stability. Int. J. Robust Nonlinear Control 13(9), 909–937 (2003)MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Germani, A., Manes, C., Pepe, P.: Observer-based stabilizing control for a class of nonlinear retarded systems. In: Sipahi, R., Vyhlidal, T., Niculescu, S.-I., Pepe, P. (eds.) Time Delay Systems: Methods, Applications and New Trends, pp. 331–342. Springer, Berlin Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    Hua, C., Guan, X., Shi, P.: Robust stabilization of a class of nonlinear time-delay systems. Appl. Math. Comput. 155(3), 737–752 (2004)MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Isidori, A.: Nonlinear Control Systems: An Introduction. Springer-Verlag, Berlin (1995)MATHCrossRefGoogle Scholar
  18. 18.
    Jankovic, M.: Control Lyapunov-Razumikhin functions and robust stabilization of time delay systems. IEEE Trans. Autom. Control 46(7), 1048–1060 (2001)MATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Karafyllis, I., Jiang, Z-P.: Necessary and sufficient Lyapunov-like conditions for robust nonlinear stabilization. ESAIM: Control, Optim. Calc. Var. 16(4), 887–928 (2010)Google Scholar
  20. 20.
    Kazantzis, N., Wright, R.: Nonlinear observer design in the presence of delayed output measurements. Syst. Control Lett. 54(9), 877–886 (2005)MATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Kravaris, C., Wright, R.: Dead time compensation for nonlinear chemical processes. AlChE J. 35(9), 1535–1542 (1989)CrossRefGoogle Scholar
  22. 22.
    Kreisselmeier, G., Engel, R.: Nonlinear observer for autonomous Lipschitz continuous systems. IEEE Trans. Autom. Control 48(3), 451–464 (2003)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Krener, A., Xiao, M.: Erratum: Nonlinear observer design in the Siegel domain. SIAM J. Control Optim. 43(1), 377–378 (2004)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Lien, C.-H.: Global exponential stabilization for several classes of uncertain nonlinear systems with time-varying delay. Nonlinear Dyn. Syst. Theor. 4(1), 15–30 (2004)MATHMathSciNetGoogle Scholar
  25. 25.
    Maggiore, M., Passino, K.: A separation principle for a class of non uniformly completely observable systems. IEEE Trans. Autom. Control 48(7), 1122–1133 (2003)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Marconi, L., Praly, L., Isidori, A.: Output stabilization via nonlinear Luenberger observers. SIAM J. Control Optim. 45(6), 2277–2298 (2007)MATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    Márquez-Martinez, L., Moog, C.: Input-output feedback linearization of time-delay systems. IEEE Trans. Autom. Control 49(5), 781–785 (2004)CrossRefGoogle Scholar
  28. 28.
    Márquez-Martinez, L., Moog, C., Velasco-Villa, M.: Observability and observers for nonlinear systems with time-delays. In: Proceedings of the 2nd IFAC Workshop on Time Delay Systems, pp. 52–58 (2000)Google Scholar
  29. 29.
    Meadows, E., Rawlings, J.: Model predictive control. In: Henson, M., Seborg, D. (eds.) Nonlinear Process Control, pp. 233–310. Prentice Hall, Englewood Cliffs, NJ (1997)Google Scholar
  30. 30.
    Mikheev, Y., Sobolev, V., Fridman, E.: Asymptotic analysis of digital control systems. Autom. Remote Control 49(9), 1175–1180 (1988)MATHMathSciNetGoogle Scholar
  31. 31.
    Oguchi, T., Watanabe, A., Nakamizo, T.: Input-output linearization of retarded non-linear systems by using an extension of Lie derivative. Int. J. Control 75(8), 582–590 (2002)MATHMathSciNetCrossRefGoogle Scholar
  32. 32.
    Smith, O.: Closer control of loops with dead-time. Chem. Eng. Prog. 53(5), 217–219 (1957)Google Scholar
  33. 33.
    Tatiraju, S., Soroush, M., Ogunnaike, B.: Multirate nonlinear state estimation with application to a polymerization reactor. AlChE J. 45(4), 769–776 (1999)CrossRefGoogle Scholar
  34. 34.
    Van Assche, V., Ahmed-Ali, T., Hann, C., Lamnabhi-Lagarrigue, F.: High gain observer design for nonlinear systems with time varying delayed measurement. In: Proceedings of the 18th IFAC World Congress, pp. 692–696 (2011)Google Scholar
  35. 35.
    Zhang, X., Cheng, Z.: Global stabilization of a class of time-delay nonlinear systems. Int. J. Syst. Sci. 36(8), 461–468 (2005)MATHCrossRefGoogle Scholar
  36. 36.
    Zhang, X., Zhang, C., Cheng, Z.: Asymptotic stabilization via output feedback for nonlinear systems with delayed output. Int. J. Syst. Sci. 37(9), 599–607 (2006)MATHCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Filippo Cacace
    • 1
  • Alfredo Germani
    • 2
  • Costanzo Manes
    • 2
  1. 1.Università Campus Biomedico di RomaRomeItaly
  2. 2.Università dell’AquilaL’AquilaItaly

Personalised recommendations