Prediction-Based Control of Linear Systems by Compensating Input-Dependent Input Delay of Integral-Type

Chapter
Part of the Advances in Delays and Dynamics book series (ADVSDD, volume 4)

Abstract

This study addresses the problem of delay compensation via a predictor-based output feedback for a class of linear systems subject to input delay which itself depends on the input. The equation defining the delay is implicit and involves past values of the input through an integral relation, the kernel of which is a polynomial function of the input. This modeling represents systems where transport phenomena take place at the inlet of a system involving a nonlinearity, which frequently occurs in the processing industry. The conditions of asymptotic stabilization require the magnitude of the feedback gain to comply with the initial conditions. Arguments for the proof of this novel result include general Halanay inequalities for delay differential equations and take advantage of recent advances in backstepping techniques for uncertain or varying delay systems.

References

  1. 1.
    Artstein, Z.: Linear systems with delayed controls: a reduction. IEEE Trans. Autom. Control 27(4), 869–879 (1982)MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Bekiaris-Liberis, N., Krstic, M.: Compensation of state-dependent input delay for nonlinear systems. IEEE Trans. Autom. Control 58(2), 275–289 (2013)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bresch-Pietri, D., Chauvin, J., Petit, N.: Adaptive control scheme for uncertain time-delay systems. Automatica 48(8), 1536–1552 (2012)MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Bresch-Pietri, D., Chauvin, J., Petit, N.: Invoking Halanay inequality to conclude on closed-loop stability of a process with input-varying delay. In: Proceedings of the 10th IFAC Workshop on Time Delay Systems, pp. 266–271 (2012)Google Scholar
  5. 5.
    Bresch-Pietri, D., Chauvin, C., Petit, N.: Prediction-based feedback control of a class of processes with input-varying delay. In: Proceedings of the American Control Conference, pp. 1991–1997 (2012)Google Scholar
  6. 6.
    Bresch-Pietri, D., Chauvin, J., Petit, N.: Sufficient condition for prediction-based stabilization of linear system subject to input-dependent input-delay. In: Proceedings of the American Control Conference, pp. 144–151 (2013)Google Scholar
  7. 7.
    Bresch-Pietri, D., Chauvin, J., Petit, N.: Prediction-based stabilization of linear systems subject to input-dependent input delay of integral-type. IEEE Trans. Autom. Control 59(9), 2385–2399 (2014)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Chebre, M., Creff, Y., Petit, N.: Feedback control and optimization for the production of commercial fuels by blending. J. Process Control 20(4), 441–451 (2010)CrossRefGoogle Scholar
  9. 9.
    Depcik, C., Assanis, D.: One-dimensional automotive catalyst modeling. Prog. Energy Combust. Sci. 31(4), 308–369 (2005)CrossRefGoogle Scholar
  10. 10.
    Gu, K., Niculescu, S.-I.: Survey on recent results in the stability and control of time-delay systems. J. Dyn. Syst. Meas. Control 125(2), 158–165 (2003)CrossRefGoogle Scholar
  11. 11.
    Halanay, A.: Differential Equations: Stability, Oscillations, Time Lags. Academic Press, New York (1966)Google Scholar
  12. 12.
    Harmand, J., Dochain, D.: The optimal design of two interconnected (bio) chemical reactors revisited. Comput. Chem. Eng. 30(1), 70–82 (2005)CrossRefGoogle Scholar
  13. 13.
    Ivanov, A., Liz, E., Trofimchuk, S.: Halanay inequality, yorke 3/2 stability criterion, and differential equations with maxima. Tohoku Math. J. 54(2), 277–295 (2002)MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Jankovic, M.: Recursive predictor design for linear systems with time delay. In: Proceedings of the American Control Conference, pp. 4904–4909 (2008)Google Scholar
  15. 15.
    Krstic, M.: Boundary Control of PDEs: A Course on Backstepping Designs. Society for Industrial and Applied Mathematics, Philadelphia (2008)CrossRefGoogle Scholar
  16. 16.
    Krstic, M.: Delay Compensation for Nonlinear, Adaptive, and PDE Systems. Birkhauser, Boston (2009)MATHCrossRefGoogle Scholar
  17. 17.
    Manitius, A., Olbrot, A.: Finite spectrum assignment problem for systems with delays. IEEE Trans. Autom. Control 24(4), 541–552 (1979)MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Michiels, W., Niculescu, S.-I.: Stability and Stabilization of Time-Delay Systems. Society for Industrial and Applied Mathematics, Philadelphia (2007)MATHCrossRefGoogle Scholar
  19. 19.
    Moon, Y., Park, P., Kwon, W.: Robust stabilization of uncertain input-delayed systems using reduction method. Automatica 37(2), 307–312 (2001)MATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Nihtila, M.: Finite pole assignment for systems with time-varying input delays. In: Proceedings of the 30th IEEE Conference on Decision and Control, pp. 927–928 (1991)Google Scholar
  21. 21.
    Perry, R., Green, D., Maloney, J.: Perry’s Chemical Engineers’ Handbook. McGraw-Hill, New York (1984)Google Scholar
  22. 22.
    Petit, N., Creff, Y., Rouchon, P.: Motion planning for two classes of nonlinear systems with delays depending on the control. In: Proceedings of the 37th IEEE Conference on Decision and Control, pp. 1007–1011 (1998)Google Scholar
  23. 23.
    Richard, J.-P.: Time-delay systems: an overview of some recent advances and open problems. Automatica 39(10), 1667–1694 (2003)MATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Sbarciog, M., De Keyser, R., Cristea, S., De Prada, C.: Nonlinear predictive control of processes with variable time delay. A temperature control case study. In Proceedings of the IEEE International Conference on Control Applications, pp. 1001–1006 (2008)Google Scholar
  25. 25.
    Smith, O.: A controller to overcome dead time. ISA J. 6(2), 28–33 (1959)Google Scholar
  26. 26.
    Sutton, G., Biblarz, O.: Rocket Propulsion Elements. Wiley, New York (2011)Google Scholar
  27. 27.
    Witrant, E.: Stabilisation des systemes commandes par rseaux. Ph.D. thesis, Laboratoire d’Automatique de Grenoble (2005)Google Scholar
  28. 28.
    Yue, D., Han, Q.: Delayed feedback control of uncertain systems with time-varying input delay. Automatica 41(2), 233–240 (2005)MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.CNRS at GIPSA-lab, Control DepartmentGrenobleFrance
  2. 2.Centre Automatique et Systèmes at MINES ParisTechParisFrance

Personalised recommendations