Backstepping Designs in the Presence of Non-constant Delays on the Virtual Input

  • Nikolaos Bekiaris-Liberis
  • Mrdjan Jankovic
  • Miroslav Krstic
Chapter
Part of the Advances in Delays and Dynamics book series (ADVSDD, volume 4)

Abstract

We present results on stabilization of nonlinear systems in the strict-feedback form with delays affecting the virtual inputs. We consider systems with constant and time-varying delays, as well as systems with delays that depend on the current or past states, which arise in numerous applications, such as, for example, in cooling systems. The design methodology is based on the concepts of infinite-dimensional backstepping and nonlinear predictor feedback. Several illustrative examples are provided.

References

  1. 1.
    Ahmed, A., Verriest, E.: Estimator design for a subsonic rocket car (soft landing) based on state-dependent delay measurement. In: Proceedings of the IEEE Conference on Decision and Control, pp. 5698–5703 (2013)Google Scholar
  2. 2.
    Altintas, Y., Engin, S., Budak, E.: Analytical stability prediction and design of variable pitch cutters. ASME J. Manuf. Sci. Eng. 121(2), 173–178 (1999)CrossRefGoogle Scholar
  3. 3.
    Artstein, Z.: Linear systems with delayed controls: a reduction. IEEE Trans. Autom. Control 27(4), 869–879 (1982)MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Bekiaris-Liberis, N., Krstic, M.: Nonlinear Control Under Nonconstant Delays. SIAM, Philadelphia (2013)MATHCrossRefGoogle Scholar
  5. 5.
    Bekiaris-Liberis, N., Jankovic, M., Krstic, M.: Compensation of state-dependent state delay for nonlinear systems. Syst. Control Lett. 61(8), 849–856 (2012)MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Bekiaris-Liberis, N., Krstic, M.: Compensation of time-varying input and state delays for nonlinear systems. J. Dyn. Syst. Meas. Control 134, 011009 (2012)Google Scholar
  7. 7.
    Bekiaris-Liberis, N., Krstic, M.: Nonlinear control under delays that depend on delayed states. Eur. J. Control 19, 389–398 (2013)MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Bekiaris-Liberis, N., Krstic, M.: Robustness of nonlinear predictor feedback laws to time- and state-dependent delay perturbations. Automatica 49(6), 1576–1590 (2013)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bekiaris-Liberis, N., Krstic, M.: Compensation of state-dependent input delay for nonlinear systems. IEEE Trans. Autom. Control 58(2), 275–289 (2013)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bendtsen, J., Krstic, M.: Control of thermodynamical system with input-dependent state delays. In: Proceedings of the IEEE Conference on Decision and Control, pp. 300–305 (2013)Google Scholar
  11. 11.
    Bresch-Pietri, D., Chauvin, J., Petit, N.: Prediction-based stabilization of linear systems subject to input-dependent input delay of integral-type. IEEE Trans. Autom. Control 59(9), 2385–2399 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Bresch-Pietri, D., Chauvin, J., Petit, N.: Adaptive control scheme for uncertain time-delay systems. Automatica 48(8), 1536–1552 (2012)MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Bresch-Pietri, D., Krstic, M.: Adaptive trajectory tracking despite unknown input delay and plant parameters. Automatica 45(9), 2075–2081 (2009)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Bresch-Pietri, D., Krstic, M.: Delay-adaptive predictor feedback for systems with unknown long actuator delay. IEEE Trans. Autom. Control 55(9), 2106–2112 (2010)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Bresch-Pietri, D., Krstic, M.: Delay-adaptive control for nonlinear systems. IEEE Trans. Autom. Control 59(5), 1203–1218 (2014)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Briat, C., Hjalmarsson, H., Johansson, K., Jonsson, U.T., Karlsson, G., Sandberg, H.: Nonlinear state-dependent delay modeling and stability analysis of internet congestion control. In: Proceedings of the IEEE Conference on Decision and Control, pp. 1484–1491 (2010)Google Scholar
  17. 17.
    Cacace, F., Germani, A., Manes, C.: An observer for a class of nonlinear systems with time varying observation delay. Syst. Control Lett. 59(5), 305–312 (2010)MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Cai, X., Krstic, M.: Nonlinear control under wave actuator dynamics with time- and state-dependent moving boundary. Int. J. Robust Nonlinear Control. doi:10.1002/rnc.3083
  19. 19.
    Choi, J., Koo, K., Kim, J., Lee, J.: Global asymptotic stability of FAST TCP in the presence of link dynamics. Int. J. Control Autom. Syst. 7(5), 809–816 (2009)CrossRefGoogle Scholar
  20. 20.
    Cloosterman, M., van de Wouw, N., Heemels, W., Nijmeijer, H.: Stability of networked control systems with uncertain time-varying delays. IEEE Trans. Autom. Control 54(7), 1575–1580 (2009)CrossRefGoogle Scholar
  21. 21.
    Diagne, M., Couenne, F., Maschke, B.: Mass transport equation with moving interface and its control as an input delay system. In: Proceedings of the 11th Workshop on Time-Delay Systems, pp. 331–336 (2013)Google Scholar
  22. 22.
    Fischer, N., Dani, A., Sharma, N., Dixon, W.: Saturated control of an uncertain nonlinear system with input delay. Automatica 49(6), 1741–1747 (2013)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Hansen, M., Stoustrup, J., Bendtsen, J.: Modeling of nonlinear marine cooling systems with closed circuit flow. In: Proceedings of the IFAC World Congress, pp. 5537–5542 (2011)Google Scholar
  24. 24.
    Ito, H., Jiang, Z.-P., Pepe, P.: Construction of Lyapunov-Krasovskii functionals for networks of iISS retarded systems in small-gain formulation. Automatica 49(11), 3246–3257 (2013)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Jankovic, M.: Control Lyapunov-Razumikhin functions and robust stabilization of time delay systems. IEEE Trans. Autom. Control 46(7), 1048–1060 (2001)MATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    Jankovic, M.: Cross-term forwarding for systems with time delay. IEEE Trans. Autom. Control 54(3), 498–511 (2009)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Karafyllis, I.: Finite-time global stabilization by means of time-varying distributed delay feedback. SIAM J. Control Optim. 45(1), 320–342 (2006)MATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    Karafyllis, I.: Stabilization by means of approximate predictors for systems with delayed input. SIAM J. Control Optim. 49(3), 1100–1123 (2011)MATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    Karafyllis, I., Krstic, M.: Nonlinear stabilization under sampled and delayed measurements, and with inputs subject to delay and zero-order hold. IEEE Trans. Autom. Control 57(5), 1141–1154 (2012)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Karafyllis, I., Krstic, M.: Stabilization of nonlinear delay systems using approximate predictors and high-gain observers. Automatica 49(12), 3623–3631 (2013)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Karafyllis, I., Krstic, M., Ahmed-Ali, T., Lamnabhi-Lagarrigue, F.: Global stabilization of nonlinear delay systems with a compact absorbing set. Int. J. Control 87(5), 1010–1027 (2014)MATHMathSciNetCrossRefGoogle Scholar
  32. 32.
    Krstic, M.: Input delay compensation for forward complete and feedforward nonlinear systems. IEEE Trans. Autom. Control 55(2), 287–303 (2010)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Krstic, M.: Delay Compensation for Nonlinear, Adaptive, and PDE Systems. Birkhauser, Boston (2009)MATHCrossRefGoogle Scholar
  34. 34.
    Krstic, M., Kanellakopoulos, I., Kokotovic, P.: Nonlinear and Adaptive Control Design. Wiley, New York (1995)Google Scholar
  35. 35.
    Manitius, A., Olbrot, A.: Finite spectrum assignment for systems with delays. IEEE Trans. Autom. Control 24(4), 541–553 (1979)Google Scholar
  36. 36.
    Mazenc, F., Bliman, P.: Backstepping design for time-delay nonlinear systems. IEEE Trans. Autom. Control 51(1), 149–154 (2006)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Mazenc, F., Malisoff, M.: Stabilization of a chemostat model with Haldane growth functions and a delay in the measurements. Automatica 46(9), 1428–1436 (2010)MATHMathSciNetCrossRefGoogle Scholar
  38. 38.
    Mazenc, F., Malisoff, M.: Asymptotic stabilization for feedforward systems with delayed feedbacks. Automatica 49(3), 780–787 (2013)MATHMathSciNetCrossRefGoogle Scholar
  39. 39.
    Mazenc, F., Mondie, S., Francisco, R.: Global asymptotic stabilization of feedforward systems with delay at the input. IEEE Trans. Autom. Control 49(5), 844–850 (2004)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Mazenc, F., Niculescu, S.-I.: Generating positive and stable solutions through delayed state feedback. Automatica 47(3), 525–533 (2011)MATHMathSciNetCrossRefGoogle Scholar
  41. 41.
    Michiels, W., Verriest, E.: A systems theoretic analysis of fast varying and state dependent delays. In: Proceedings of the IEEE Conference on Decisions and Control, pp. 6313–6318 (2011)Google Scholar
  42. 42.
    Pepe, P.: On Sontag’s formula for the input-to-state practical stabilization of retarded control-affine systems. Syst. Control Lett. 62(11), 1018–1025 (2013)MATHMathSciNetCrossRefGoogle Scholar
  43. 43.
    Pepe, P., Ito, H.: On saturation, discontinuities, and delays, in iISS and ISS feedback control redesign. IEEE Trans. Autom. Control 57(5), 1125–1140 (2012)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Richard, J.-P.: Time-delay systems: an overview of some recent advances and open problems. Automatica 39(10), 1667–1694 (2003)MATHMathSciNetCrossRefGoogle Scholar
  45. 45.
    Sepulchre, R., Jankovic, M., Kokotovic, P.: Integrator forwarding: a new recursive nonlinear robust design. Automatica 33(5), 979–984 (1997)MATHMathSciNetCrossRefGoogle Scholar
  46. 46.
    Sipahi, R., Lammer, S., Niculescu, S-I., Helbing, D.: On stability analysis and parametric design of supply networks under the presence of transportation delays. In: Proceedings of the ASME 2006 International Mechanical Engineering Congress and Exposition, pp. 135–144 (2006)Google Scholar
  47. 47.
    Teel, A.: Connections between Razumikhin-type theorems and the ISS nonlinear small gain theorem. IEEE Trans. Autom. Control 43(7), 960–964 (1998)MATHMathSciNetCrossRefGoogle Scholar
  48. 48.
    Travis, S.: A one-dimensional two-body problem of classical electrodynamics. SIAM J. Appl. Math. 28(3), 611–632 (1975)MATHMathSciNetCrossRefGoogle Scholar
  49. 49.
    Verriest, E.: Inconsistencies in systems with time-varying delays and their resolution. IMA J. Math. Control Inf. 28(2), 147–162 (2011)MATHMathSciNetCrossRefGoogle Scholar
  50. 50.
    Walther, H.-O.: On a model for soft landing with state-dependent delay. J. Dyn. Syst. Differ. Equ. 19(3), 593–622 (2007)MATHMathSciNetCrossRefGoogle Scholar
  51. 51.
    Witrant, E.: Canudas de Witt, C., Georges, D., Alamir, M.: Remote stabilization via communication networks with a distributed control law. IEEE Trans. Autom. Control 52(8), 1480–1485 (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Nikolaos Bekiaris-Liberis
    • 1
  • Mrdjan Jankovic
    • 2
  • Miroslav Krstic
    • 3
  1. 1.University of California, BerkeleyBerkeleyUSA
  2. 2.Ford Motor CompanyDearbornUSA
  3. 3.University of California, San DiegoLa JollaUSA

Personalised recommendations