Stabilization of Nonlinear Delay Systems: A Tutorial on Recent Results

  • Iasson Karafyllis
  • Michael Malisoff
  • Frederic Mazenc
  • Pierdomenico Pepe
Chapter
Part of the Advances in Delays and Dynamics book series (ADVSDD, volume 4)

Abstract

Stabilization of nonlinear systems under delays is a central and challenging problem in control theory. It is also of considerable interest in engineering, because delay systems are prevalent in aerospace, biological, marine robotic, network control, and many other applications. Input delays naturally arise due to transport phenomena, time consuming information processing, and sensor designs, and they can produce complicated systems that are beyond the scope of standard frequency-domain or Lyapunov function methods. This has led to large control theoretic and engineering literatures on stabilization problems, spanning more than 40 years, based on backstepping, Lyapunov-Krasovskii functionals, prediction, and sampling controllers. In addition to input delays, there may also be state delays in the vector fields that define the system. This tutorial summarizes some recent work on stabilization under input or state delays and suggests future research directions.

References

  1. 1.
    Ahmed-Ali, T., Cherrier, E., Lamnabhi-Lagarrigue, F.: Cascade high gain predictor for a class of nonlinear systems. IEEE Trans. Autom. Control 57(1), 221–226 (2012)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ahmed-Ali, T., Karafyllis, I., Krstic, M., Lamnabhi-Lagarrigue, F.: Robust stabilization of nonlinear globally Lipschitz delay systems. In: Karafyllis, I., Malisoff, M., Mazenc, F., Pepe, P. (eds.) Recent Results on Nonlinear Time Delayed Systems. Series Advances in Delays and Dynamics. Springer, Berlin (2015)Google Scholar
  3. 3.
    Artstein, Z.: Linear systems with delayed controls: a reduction. IEEE Trans. Autom. Control 27(4), 869–879 (1982)MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Artstein, Z.: Stabilization with relaxed controls. Nonlinear Analysis: Theory, Methods and Applications 7(1), 1163–1173 (1983)MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Bekiaris-Liberis, N., Jankovic, M., Krstic, M.: Compensation of state-dependent state delay for nonlinear systems. Syst. Control Lett. 61(8), 849–856 (2012)MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Bekiaris-Liberis, N., Krstic, M.: Compensation of time-varying input and state delays for nonlinear systems. J. Dyn. Syst. Meas. Control 134(1), Paper 011009 (2012)Google Scholar
  7. 7.
    Bekiaris-Liberis, N., Krstic, M.: Nonlinear Control Under Nonconstant Delays. Siam, Philadelphia (2013)MATHCrossRefGoogle Scholar
  8. 8.
    Bekiaris-Liberis, N., Krstic, M.: Compensation of state-dependent input delay for nonlinear systems. IEEE Trans. Autom. Control 58(2), 275–289 (2013)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bresch-Prietri, D., Krstic, M.: Delay-adaptive control for nonlinear systems. IEEE Trans. Autom. Control 59(5), 1203–1218 (2014)CrossRefGoogle Scholar
  10. 10.
    Cacace, F., Germani, A., Manes, C.: An observer for a class of nonlinear systems with time varying observation delay. Syst. Control Lett. 59(5), 305–312 (2010)MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Cacace, F., Germani, A., Manes, C.: A chain observer for nonlinear systems with multiple time-varying measurement delays. SIAM J. Control Optim. 52(3), 1862–1885 (2014)MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Cacace, F., Germani, A., Manes, C.: State estimation and control of nonlinear systems with large and variable measurement delays. In: Karafyllis, I., Malisoff, M., Mazenc, F., Pepe, P. (eds.) Recent Results on Nonlinear Time Delayed Systems. Series Advances in Delays and Dynamics. Springer, Berlin (2015)Google Scholar
  13. 13.
    Califano, C., Marquez-Martinez, L., Moog, C.: Extended Lie brackets for nonlinear time delay systems. IEEE Trans. Autom. Control 56(9), 2213–2218 (2011)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Califano, C., Marquez-Martinez, L., Moog, C.: Linearization of time delay systems by input-output injection and output transformation. Automatica 49(6), 1932–1940 (2013)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Castillo-Toledo, B., Di Gennaro, S., Sandoval Castro, G.: Stability analysis for a class of sampled nonlinear systems with time delay. In: Proceedings of the 49th IEEE Conference on Decision and Control, pp. 1575–1580 (2010)Google Scholar
  16. 16.
    Choi, H., Lim, J.: Asymptotic stabilization of an input-delayed chain of integrators with nonlinearity. Syst. Control Lett. 59(6), 374–379 (2010)MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Clarke, F., Ledyaev, Y., Sontag, E., Subbotin, A.: Asymptotic controllability implies feedback stabilization. IEEE Trans. Autom. Control 42(10), 1394–1407 (1997)MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Di Ciccio, M., Bottini, M., Pepe, P., Foscolo, P.: Observer-based nonlinear control law for a continuous stirred tank reactor with recycle. Chem. Eng. Sci. 66(20), 4780–4797 (2011)CrossRefGoogle Scholar
  19. 19.
    Driver, R.: Existence and stability of solutions of a delay-differential system. Arch. Ration. Mech. Anal. 10(1), 401–426 (1962)MATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Freeman, R., Kokotovic, P.: Robust Nonlinear Control Design-State Space and Lyapunov Techniques. Birkhauser, Boston (1996)MATHCrossRefGoogle Scholar
  21. 21.
    Fridman, E., Seuret, A., Richard, J.-P.: Robust sampled-data stabilization of linear systems: an input-delay approach. Automatica 40(8), 1441–1446 (2004)MATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Fridman, E., Shaked, U., Suplin, V.: Input/output delay approach to robust sampled-data \(H_{\infty }\) control. Syst. Control Lett. 54(3), 271–282 (2005)MATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Gao, H., Chen, T., Lam, J.: A new system approach to network-based control. Automatica 44(1), 39–52 (2008)MATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Germani, A., Manes, C., Pepe, P.: Local asymptotic stability for nonlinear state feedback delay systems. Kybernetika 36(1), 31–42 (2000)MATHMathSciNetGoogle Scholar
  25. 25.
    Germani, A., Manes, C., Pepe, P.: An asymptotic state observer for a class of nonlinear delay systems. Kybernetika 37(4), 459–478 (2001)MATHMathSciNetGoogle Scholar
  26. 26.
    Germani, A., Manes, C., Pepe, P.: A new approach to state observation of nonlinear systems with delayed output. IEEE Trans. Autom. Control 47(1), 96–101 (2002)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Germani, A., Manes, C., Pepe, P.: Input-output linearization with delay cancellation for nonlinear delay systems: the problem of the internal stability. Int. J. Robust Nonlinear Control 13(9), 909–937 (2003)MATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    Germani, A., Manes, C., Pepe, P.: Observer-based stabilizing control for a class of nonlinear retarded systems. In: Sipahi, R., Vyhlidal, T., Niculescu, S.-I., Pepe, P. (eds.) Time Delay Systems: Methods, Applications and New Trends, pp. 331–342. Springer, Berlin (2012)CrossRefGoogle Scholar
  29. 29.
    Germani, A., Pepe, P.: A state observer for a class of nonlinear systems with multiple discrete and distributed time delays. Eur. J. Control 11(3), 196–205 (2005)MATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Gomes da Silva, J., Tarbouriech, S., Garcia, G.: Anti-windup design for time delay systems subject to input saturation an LMI-based approach. Eur. J. Control 6(12), 622–634 (2006)Google Scholar
  31. 31.
    Heemels, M., Teel, A., van de Wouw, N., Nesic, D.: Networked control systems with communication constraints: tradeoffs between transmission intervals, delays and performance. IEEE Trans. Autom. Control 55(8), 1781–1796 (2010)CrossRefGoogle Scholar
  32. 32.
    Hua, C., Feng, G., Guan, X.: Robust controller design of a class of nonlinear time delay systems via backstepping methods. Automatica 44(2), 567–573 (2008)MATHMathSciNetCrossRefGoogle Scholar
  33. 33.
    Hua, C., Guan, X., Shi, P.: Robust stabilization of a class of nonlinear time delay systems. Appl. Math. Comput. 155(3), 737–752 (2004)MATHMathSciNetCrossRefGoogle Scholar
  34. 34.
    Ito, H., Jiang, Z.-P., Pepe, P.: Construction of Lyapunov-Krasovskii functionals for networks of iISS retarded systems in small-gain formulation. Automatica 49(11), 3246–3257 (2013)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Ito, H., Pepe, P., Jiang, Z.-P.: A small-gain condition for iISS of interconnected retarded systems based on Lyapunov-Krasovskii functionals. Automatica 46(10), 1646–1656 (2010)MATHMathSciNetCrossRefGoogle Scholar
  36. 36.
    Jankovic, M.: Extension of control Lyapunov functions to time delay systemss. In: Proceedings of the IEEE Conference on Decision and Control, pp. 4403–4408 (2000)Google Scholar
  37. 37.
    Jankovic, M.: Control Lyapunov-Razumikhin functions and robust stabilization of time delay systems. IEEE Trans. Autom. Control 46(7), 1048–1060 (2001)MATHMathSciNetCrossRefGoogle Scholar
  38. 38.
    Jankovic, M.: Stabilization of nonlinear time delay systems with delay independent feedback. In: Proceedings of the American Control Conference, pp. 4253–4258 (2005)Google Scholar
  39. 39.
    Karafyllis, I.: Finite-time global stabilization by means of time-varying distributed delay feedback. SIAM J. Control Optim. 45(1), 320–342 (2006)MATHMathSciNetCrossRefGoogle Scholar
  40. 40.
    Karafyllis, I.: Lyapunov theorems for systems described by RFDEs. Nonlinear Anal. Theory Methods Appl. 64(3), 590–617 (2006)MATHMathSciNetCrossRefGoogle Scholar
  41. 41.
    Karafyllis, I.: Stabilization by means of approximate predictors for systems with delayed input. SIAM J. Control Optim. 49(3), 1100–1123 (2011)MATHMathSciNetCrossRefGoogle Scholar
  42. 42.
    Karafyllis, I., Jiang, Z.-P.: Necessary and sufficient Lyapunov-like conditions for robust nonlinear stabilization. ESAIM Control Optim. Calc. Var. 16(4), 887–928 (2010)MATHMathSciNetCrossRefGoogle Scholar
  43. 43.
    Karafyllis, I., Jiang, Z.-P.: Stability and Stabilization of Nonlinear Systems. Springer, London (2011)MATHCrossRefGoogle Scholar
  44. 44.
    Karafyllis, I., Kravaris, C.: Global stability results for systems under sampled-data control. Int. J. Robust Nonlinear Control 19(10), 1105–1128 (2009)MATHMathSciNetCrossRefGoogle Scholar
  45. 45.
    Karafyllis, I., Krstic, M.: Global stabilization of feedforward systems under perturbations in sampling schedule. SIAM J. Control Optim. 50(3), 1389–1412 (2012)MATHMathSciNetCrossRefGoogle Scholar
  46. 46.
    Karafyllis, I., Krstic, M.: Nonlinear stabilization under sampled and delayed measurements, and with inputs subject to delay and zero-order hold. IEEE Trans. Autom. Control 57(5), 1141–1154 (2012)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Karafyllis, I., Krstic, M.: Stabilization of nonlinear delay systems using approximate predictors and high-gain observers. Automatica 49(12), 3623–3631 (2013)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Karafyllis, I., Krstic, M., Ahmed-Ali, T., Lamnabhi-Lagarrigue, F.: Global stabilization of nonlinear delay systems with a compact absorbing set. Int. J. Control 87(5), 1010–1027 (2014)MATHMathSciNetCrossRefGoogle Scholar
  49. 49.
    Karafyllis, I., Krstic, M.: Numerical schemes for nonlinear predictor feedback. Math. Control Signals Systems 26(4), 519–546 (2014)MATHMathSciNetCrossRefGoogle Scholar
  50. 50.
    Karafyllis, I., Malisoff, M., de Queiroz, M., Krstic, M., Yang, R.: Predictor-based tracking for neuromuscular electrical stimulation. Int. J. Robust Nonlinear Control (to appear). doi:10.1002/rnc.3211
  51. 51.
    Kazantzis, N., Wright, R.: Nonlinear observer design in the presence of delayed output measurements. Syst. Control Lett. 54(9), 877–886 (2005)MATHMathSciNetCrossRefGoogle Scholar
  52. 52.
    Khalil, H.: Nonlinear Systems, 2nd edn. Prentice-Hall, Englewood Cliffs (1996)Google Scholar
  53. 53.
    Kim, A.: On the Lyapunov’s functionals method for systems with delays. Nonlinear Anal. Theory Methods Appl. 28(4), 673–687 (1997)MATHCrossRefGoogle Scholar
  54. 54.
    Kim, A.: Functional Differential Equations. Application of I-Smooth Calculus. Kluwer Academic Publishers, Dordrecht (1999)MATHGoogle Scholar
  55. 55.
    Krstic, M.: Delay Compensation for Nonlinear, Adaptive, and PDE Systems. Birkhauser, Boston (2009)MATHCrossRefGoogle Scholar
  56. 56.
    Krstic, M.: Input delay compensation for forward complete and strict-feedforward nonlinear systems. IEEE Trans. Autom. Control 55(2), 287–303 (2010)MathSciNetCrossRefGoogle Scholar
  57. 57.
    Krstic, M., Kanellakopoulos, I., Kokotovic, P.: Nonlinear and Adaptive Control Design. Wiley, New York (1995)Google Scholar
  58. 58.
    Kwon, W., Pearson, A.: Feedback stabilization of linear systems with delayed control. IEEE Trans. Autom. Control 25(2), 266–269 (1980)MATHMathSciNetCrossRefGoogle Scholar
  59. 59.
    Lien, C.: Global exponential stabilization for several classes of uncertain nonlinear systems with time-varying delay. Nonlinear Dyn. Syst. Theory 4(1), 15–30 (2004)MATHMathSciNetGoogle Scholar
  60. 60.
    Lozano, R., Castillo, P., Garcia, P., Dzul, A.: Robust prediction-based control for unstable delay systems: application to the yaw control of a mini-helicopter. Automatica 40(4), 603–612 (2004)MATHMathSciNetCrossRefGoogle Scholar
  61. 61.
    Mahboobi Esfanjani, R., Nikravesh, S.: Stabilising predictive control of non-linear time delay systems using control Lyapunov-Krasovskii functionals. IET Control Theory Appl. 3(10), 1395–1400 (2009)Google Scholar
  62. 62.
    Malisoff, M., Mazenc, F.: Constructions of Strict Lyapunov Functions. Springer, New York (2009)MATHCrossRefGoogle Scholar
  63. 63.
    Manitius, A., Olbrot, A.: Finite spectrum assignment for systems with delays. IEEE Trans. Autom. Control 24(4), 541–553 (1979)MATHMathSciNetCrossRefGoogle Scholar
  64. 64.
    Marquez-Martinez, L., Moog, C.: Input-output feedback linearization of time delay systems. IEEE Trans. Autom. Control 49(5), 781–785 (2004)MathSciNetCrossRefGoogle Scholar
  65. 65.
    Marquez-Martinez, L., Moog, C.: New insights on the analysis of nonlinear time delay systems: application to the triangular equivalence. Syst. Control Lett. 56(2), 133–140 (2007)MATHMathSciNetCrossRefGoogle Scholar
  66. 66.
    Mazenc, F., Bernard, O.: ISS interval observers for nonlinear systems transformed into triangular systems. Int. J. Robust Nonlinear Control 24(7), 1241–1261 (2014)MATHMathSciNetCrossRefGoogle Scholar
  67. 67.
    Mazenc, F., Bliman, P.: Backstepping design for time delay nonlinear systems. IEEE Trans. Autom. Control 51(1), 149–154 (2006)MathSciNetCrossRefGoogle Scholar
  68. 68.
    Mazenc, F., Ito, H.: Lyapunov technique and backstepping for nonlinear neutral systems. IEEE Trans. Autom. Control 58(2), 512–517 (2013)MathSciNetCrossRefGoogle Scholar
  69. 69.
    Mazenc, F., Jiang, Z.-P.: Global output feedback stabilization of a chemostat with an arbitrary number of species. IEEE Trans. Autom. Control 55(11), 2570–2575 (2010)MathSciNetCrossRefGoogle Scholar
  70. 70.
    Mazenc, F., Malisoff, M.: Local stabilization of nonlinear systems through the reduction model approach. IEEE Trans. Autom. Control 59(11), 3033–3039 (2014)Google Scholar
  71. 71.
    Mazenc, F., Malisoff, M., Dinh, T.: Robustness of nonlinear systems with respect to delay and sampling of the controls. Automatica 49(6), 1925–1931 (2013)MathSciNetCrossRefGoogle Scholar
  72. 72.
    Mazenc, F., Malisoff, M., Lin, Z.: Further results on input-to-state stability for nonlinear systems with delayed feedbacks. Automatica 44(9), 2415–2421 (2008)MATHMathSciNetCrossRefGoogle Scholar
  73. 73.
    Mazenc, F., Niculescu, S.-I., Bekaik, M.: Generating positive and stable solutions through delayed state feedback. Automatica 47(3), 525–533 (2011)MATHMathSciNetCrossRefGoogle Scholar
  74. 74.
    Mazenc, F., Niculescu, S.-I., Bekaik, M.: Backstepping for nonlinear systems with delay in the input revisited. SIAM J. Control Optim. 49(6), 2239–2262 (2011)MathSciNetCrossRefGoogle Scholar
  75. 75.
    Mondie, S., Michiels, W.: Finite spectrum assignment of unstable time delay systems with a safe implementation. IEEE Trans. Autom. Control 48(12), 2207–2212 (2003)MathSciNetCrossRefGoogle Scholar
  76. 76.
    Naghshtabrizi, P., Hespanha, J., Teel, A.: Stability of delay impulsive systems with application to networked control systems. In: Proceedings of the American Control Conference, pp. 4899–4904 (2007)Google Scholar
  77. 77.
    Nesic, D., Liberzon, D.: A unified framework for design and analysis of networked and quantized control systems. IEEE Trans. Autom. Control 54(4), 732–747 (2009)MathSciNetCrossRefGoogle Scholar
  78. 78.
    Nesic, D., Teel, A.: Input-to-state stability of networked control systems. Automatica 40(12), 2121–2128 (2008)MathSciNetGoogle Scholar
  79. 79.
    Nesic, D., Teel, A., Carnevale, D.: Explicit computation of the sampling period in emulation of controllers for nonlinear sampled-data systems. IEEE Trans. Autom. Control 54(3), 619–624 (2009)MathSciNetCrossRefGoogle Scholar
  80. 80.
    Nguang, S.: Robust stabilization of a class of time delay nonlinear systems. IEEE Trans. Autom. Control 45(4), 756–762 (2000)MATHMathSciNetCrossRefGoogle Scholar
  81. 81.
    Oguchi, T.: A finite spectrum assignment for retarded non-linear systems and its solvability condition. Int. J. Control 80(6), 898–907 (2007)MATHMathSciNetCrossRefGoogle Scholar
  82. 82.
    Oguchi, T., Watanabe, A.: Input-output linearization of nonlinear systems with time delays in state variables. Int. J. Syst. Sci. 29(6), 573–578 (1998)CrossRefGoogle Scholar
  83. 83.
    Oguchi, T., Watanabe, A., Nakamizo, T.: Input-output linearization of retarded non-linear systems by using an extension of Lie derivative. Int. J. Control 75(8), 582–590 (2002)MATHMathSciNetCrossRefGoogle Scholar
  84. 84.
    Palumbo, P., Pepe, P., Panunzi, S., De Gaetano, A.: Time-delay model-based control of the glucose-insulin system, by means of a state observer. Eur. J. Control 18(6), 591–606 (2012)MATHMathSciNetCrossRefGoogle Scholar
  85. 85.
    Partington, J., Makila, P.: Rational approximation of distributed-delay controllers. Int. J. Control 78(16), 1295–1301 (2005)MATHMathSciNetCrossRefGoogle Scholar
  86. 86.
    Pepe, P.: Adaptive output tracking for a class of nonlinear time delay systems. Int. J. Adapt. Control Signal Process. 18(6), 489–503 (2004)MATHCrossRefGoogle Scholar
  87. 87.
    Pepe, P., Jiang, Z.-P.: A Lyapunov-Krasovskii methodology for ISS and iISS of time delay systems. Syst. Control Lett. 55(12), 1006–1014 (2006)MATHMathSciNetCrossRefGoogle Scholar
  88. 88.
    Pepe, P.: On Liapunov-Krasovskii functionals under Carathéodory conditions. Automatica 43(4), 701–706 (2007)MATHMathSciNetCrossRefGoogle Scholar
  89. 89.
    Pepe, P.: The problem of the absolute continuity for Lyapunov-Krasovskii functionals. IEEE Trans. Autom. Control 52(5), 953–957 (2007)MathSciNetCrossRefGoogle Scholar
  90. 90.
    Pepe, P.: Input-to-state stabilization of stabilizable, time delay, control affine, nonlinear systems. IEEE Trans. Autom. Control 54(7), 1688–1693 (2009)MathSciNetCrossRefGoogle Scholar
  91. 91.
    Pepe, P.: On Sontag’s formula for the input-to-state practical stabilization of retarded control-affine systems. Syst. Control Lett. 62(11), 1018–1025 (2013)MATHMathSciNetCrossRefGoogle Scholar
  92. 92.
    Pepe, P.: Stabilization in the sample-and-hold sense of nonlinear retarded systems. SIAM J. Control Optim. 52(5), 3053–3077 (2014)MATHMathSciNetCrossRefGoogle Scholar
  93. 93.
    Pepe, P., Ito, H.: On saturation, discontinuities and delays, in iISS and ISS feedback control redesign. IEEE Trans. Autom. Control 57(5), 1125–1140 (2012)MathSciNetCrossRefGoogle Scholar
  94. 94.
    Sastry, S.: Nonlinear Systems, Analysis. Stability and Control. Springer, New York (1999)MATHGoogle Scholar
  95. 95.
    Sontag, E.: A “universal” construction of Artstein’s theorem on nonlinear stabilization. Syst. Control Lett. 13(2), 117–123 (1989)MATHMathSciNetCrossRefGoogle Scholar
  96. 96.
    Sontag, E.: Smooth stabilization implies coprime factorization. IEEE Trans. Autom. Control 34(4), 435–443 (1989)MATHMathSciNetCrossRefGoogle Scholar
  97. 97.
    Tabbara, M., Nesic, D., Teel, A.: Networked control systems: emulation based design. In: Liu, D., Wang, F.-Y. (eds.) Networked Control Systems, pp. 57–94. Springer, London (2008)CrossRefGoogle Scholar
  98. 98.
    Tabuada, P.: Event-triggered real-time scheduling of stabilizing control tasks. IEEE Trans. Autom. Control 52(9), 1680–1685 (2007)MathSciNetCrossRefGoogle Scholar
  99. 99.
    Thakur, D., Mazenc, F., Akella, M.: Lyapunov strictification and angular velocity observers for smooth attitude tracking controllers. In: Proceedings of the AIAA Space and Astronautics Forum and Exposition: AIAA/AAS Astrodynamics Specialist Conference, 18pp. (2014)Google Scholar
  100. 100.
    Xia, X., Marquez-Martinez, L., Zagalak, P., Moog, C.: Analysis of nonlinear time delay systems using modules over non-commutative rings. Automatica 38(9), 1549–1555 (2002)MATHMathSciNetCrossRefGoogle Scholar
  101. 101.
    Yeganefar, N., Pepe, P., Dambrine, M.: Input-to-state stability of time delay systems: a link with exponential stability. IEEE Trans. Autom. Control 53(6), 1526–1531 (2008)MathSciNetCrossRefGoogle Scholar
  102. 102.
    Zhang, X., Cheng, Z.: Global stabilization of a class of time delay nonlinear systems. Int. J. Syst. Sci. 36(8), 461–468 (2005)MATHCrossRefGoogle Scholar
  103. 103.
    Zhang, X., Lin, Y.: Global stabilization of high-order nonlinear time delay systems by state feedback. Syst. Control Lett. 65, 89–95 (2014)MATHCrossRefGoogle Scholar
  104. 104.
    Zhong, Q.-C.: Robust Control of Time-Delay Systems. Springer, London (2010)Google Scholar
  105. 105.
    Zhou, S., Geng, G., Nguang, S.: Comments on robust stabilization of a class of time delay nonlinear systems. IEEE Trans. Autom. Control 47(9), 1586 (2002)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Iasson Karafyllis
    • 1
  • Michael Malisoff
    • 2
  • Frederic Mazenc
    • 3
  • Pierdomenico Pepe
    • 4
  1. 1.Department of MathematicsNational Technical University of AthensAthensGreece
  2. 2.Department of Mathematics, 303 Lockett HallLouisiana State UniversityBaton RougeUSA
  3. 3.EPI DISCO INRIA-SaclayL2S, CNRS-SupelecGif-sur-YvetteFrance
  4. 4.Department of Information Engineering, Computer Science, and MathematicsUniversity of L’AquilaL’aquilaItaly

Personalised recommendations