Advertisement

Nature-Inspired Multifunctional Host Defense Peptides with Dual Antimicrobial-Immunomodulatory Activities

  • Jasmeet Singh Khara
  • Pui Lai Rachel EeEmail author
Chapter

Abstract

Naturally occurring antimicrobial peptides (AMPs) have been proposed as blueprints for the development of new antimicrobials to combat the widespread emergence of bacterial resistance. Though early work in the field has predominantly focused on their broad-spectrum antimicrobial activity, mounting evidence suggests that the immunomodulating properties of these innate defense molecules may be as critical for their development into potent therapeutic agents. In this chapter, the biological activities of both natural and synthetic multifunctional host defense peptides (HDPs) are discussed, with a focus on design strategies aimed at bestowing these molecules with superior antimicrobial and immune-regulating properties, their potential clinical applications, and challenges hampering the transition of these therapeutic agents from the benchtop to the clinic.

Keywords

Antimicrobial peptides Host defense peptides Immunomodulatory peptides Anti-inflammatory Cathelicidins Defensins Peptide conjugates Hybrid peptides Peptidomimetics Peptide congeners 

References

  1. 1.
    Steiner H, Hultmark D, Engström A, Bennich H, Boman H. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature. 1981;292(5820):246–8.CrossRefGoogle Scholar
  2. 2.
    Ganz T, Selsted ME, Szklarek D, et al. Defensins. Natural peptide antibiotics of human neutrophils. J Clin Invest. 1985;76(4):1427.CrossRefGoogle Scholar
  3. 3.
    Zasloff M. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci U S A. 1987;84(15):5449–53.CrossRefGoogle Scholar
  4. 4.
    Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002;415(6870):389–95.CrossRefGoogle Scholar
  5. 5.
    Bowdish DM, Davidson DJ, Lau YE, Lee K, Scott MG, Hancock RE. Impact of LL-37 on anti-infective immunity. J Leukocyte Biol. 2005;77(4):451–9.CrossRefGoogle Scholar
  6. 6.
    Scott MG, Dullaghan E, Mookherjee N, et al. An anti-infective peptide that selectively modulates the innate immune response. Nat Biotechnol. 2007;25(4):465–72.CrossRefGoogle Scholar
  7. 7.
    Khara JS, Wang Y, Ke X-Y, et al. Anti-mycobacterial activities of synthetic cationic α-helical peptides and their synergism with rifampicin. Biomaterials. 2014;35(6):2032–8.CrossRefGoogle Scholar
  8. 8.
    Hancock RE, Sahl H-G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol. 2006;24(12):1551–7.CrossRefGoogle Scholar
  9. 9.
    Peschel A, Sahl H-G. The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Microbiol. 2006;4(7):529–36.CrossRefGoogle Scholar
  10. 10.
    Travis SM, Anderson NN, Forsyth WR, et al. Bactericidal activity of mammalian cathelicidin-derived peptides. Infect Immun. 2000;68(5):2748–55.CrossRefGoogle Scholar
  11. 11.
    Feng X, Sambanthamoorthy K, Palys T, Paranavitana C. The human antimicrobial peptide LL-37 and its fragments possess both antimicrobial and antibiofilm activities against multidrug-resistant Acinetobacter baumannii. Peptides. 2013;49:131–7.CrossRefGoogle Scholar
  12. 12.
    Ogata K, Linzer B, Zuberi R, Ganz T, Lehrer R, Catanzaro A. Activity of defensins from human neutrophilic granulocytes against Mycobacterium avium-Mycobacterium intracellulare. Infect Immun. 1992;60(11):4720–5.Google Scholar
  13. 13.
    Sharma S, Verma I, Khuller G. Biochemical interaction of human neutrophil peptide-1 with Mycobacterium tuberculosis H37Ra. Arch Microbiol. 1999;171(5):338–42.CrossRefGoogle Scholar
  14. 14.
    Singh PK, Jia HP, Wiles K, et al. Production of β-defensins by human airway epithelia. Proc Natl Acad Sci U S A. 1998;95(25):14961–6.CrossRefGoogle Scholar
  15. 15.
    Maisetta G, Batoni G, Esin S, et al. In vitro bactericidal activity of human β-defensin 3 against multidrug-resistant nosocomial strains. Antimicrob Agents Chemother. 2006;50(2):806–9.CrossRefGoogle Scholar
  16. 16.
    Chen X, Niyonsaba Fß, Ushio H, et al. Synergistic effect of antibacterial agents human β-defensins, cathelicidin LL-37 and lysozyme against Staphylococcus aureus and Escherichia coli. J Dermatol Sci. 2005;40(2):123–32.CrossRefGoogle Scholar
  17. 17.
    Nagaoka I, Hirota S, Yomogida S, Ohwada A, Hirata M. Synergistic actions of antibacterial neutrophil defensins and cathelicidins. Inflamm Res. 2000;49(2): 73–9.CrossRefGoogle Scholar
  18. 18.
    Niyonsaba F, Iwabuchi K, Someya A, et al. A cathelicidin family of human antibacterial peptide LL-37 induces mast cell chemotaxis. Immunology. 2002;106(1):20–6.CrossRefGoogle Scholar
  19. 19.
    Tjabringa GS, Ninaber DK, Drijfhout JW, Rabe KF, Hiemstra PS. Human cathelicidin LL-37 is a chemoattractant for eosinophils and neutrophils that acts via formyl-peptide receptors. Int Arch Allergy Imm. 2006;140(2):103–12.CrossRefGoogle Scholar
  20. 20.
    Yang D, Chen Q, Schmidt AP, et al. LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J Exp Med. 2000;192(7):1069–74.CrossRefGoogle Scholar
  21. 21.
    Yang D, Chertov O, Bykovskaia S, et al. β-Defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science. 1999;286(5439):525–8.CrossRefGoogle Scholar
  22. 22.
    Yang D, Chen Q, Chertov O, Oppenheim JJ. Human neutrophil defensins selectively chemoattract naive T and immature dendritic cells. J Leukocyte Biol. 2000;68(1):9–14.Google Scholar
  23. 23.
    Grigat J, Soruri A, Forssmann U, Riggert J, Zwirner J. Chemoattraction of macrophages, T lymphocytes, and mast cells is evolutionarily conserved within the human α-defensin family. J Immunol. 2007;179(6):3958–65.CrossRefGoogle Scholar
  24. 24.
    Territo M, Ganz T, Selsted M, Lehrer R. Monocyte-chemotactic activity of defensins from human neutrophils. J Clin Invest. 1989;84(6):2017.CrossRefGoogle Scholar
  25. 25.
    Scott MG, Davidson DJ, Gold MR, Bowdish D, Hancock RE. The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responses. J Immunol. 2002;169(7):3883–91.CrossRefGoogle Scholar
  26. 26.
    Chaly YV, Paleolog E, Kolesnikova T, Tikhonov I, Petratchenko E, Voitenok N. Neutrophil α-defensin human neutrophil peptide modulates cytoline production in human monocytes and adhesion molecule expression in endothelial cells. Eur Cytokine Netw. 2000;11(2):257–66.Google Scholar
  27. 27.
    Niyonsaba Fß, Ushio H, Nakano N, et al. Antimicrobial peptides human β-defensins stimulate epidermal keratinocyte migration, proliferation and production of proinflammatory cytokines and chemokines. J Invest Dermatol. 2006;127(3):594–604.CrossRefGoogle Scholar
  28. 28.
    Salunke DB, Hazra BG, Pore VS. Steroidal conjugates and their pharmacological applications. Curr Med Chem. 2006;13(7):813–47.CrossRefGoogle Scholar
  29. 29.
    Rozansky R, Bachrach U, Grossowicz N. Studies on the antibacterial action of spermine. J Gen Microbiol. 1954;10(1):11–6.CrossRefGoogle Scholar
  30. 30.
    Bucki R, Leszczyńska K, Byfield FJ, et al. Combined antibacterial and anti-inflammatory activity of a cationic disubstituted dexamethasone-spermine conjugate. Antimicrob Agents Chemother. 2010;54(6):2525–33.CrossRefGoogle Scholar
  31. 31.
    Wang Y, Ke X-Y, Khara JS, et al. Synthetic modifications of the immunomodulating peptide thymopentin to confer anti-mycobacterial activity. Biomaterials. 2014;35(9):3102–9.CrossRefGoogle Scholar
  32. 32.
    Majerle A, Kidrič J, Jerala R. Enhancement of antibacterial and lipopolysaccharide binding activities of a human lactoferrin peptide fragment by the addition of acyl chain. J Antimicrob Chemoth. 2003;51(5):1159–65.CrossRefGoogle Scholar
  33. 33.
    Liu Y, Xia X, Xu L, Wang Y. Design of hybrid β-hairpin peptides with enhanced cell specificity and potent anti-inflammatory activity. Biomaterials. 2013;34(1):237–50.CrossRefGoogle Scholar
  34. 34.
    Bhunia A, Mohanram H, Domadia PN, Torres J, Bhattacharjya S. Designed β-boomerang antiendotoxic and antimicrobial peptides: structures and activities in lipopolysaccharide. J Biol Chem. 2009;284(33):21991–2004.CrossRefGoogle Scholar
  35. 35.
    Mohanram H, Bhattacharjya S. Resurrecting inactive antimicrobial peptides from the lipopolysaccharide trap. Antimicrob Agents Chemother. 2014;58(4):1987–96.CrossRefGoogle Scholar
  36. 36.
    Scudiero O, Galdiero S, Cantisani M, et al. Novel synthetic, salt-resistant analogs of human beta-defensins 1 and 3 endowed with enhanced antimicrobial activity. Antimicrob Agents Chemother. 2010;54(6):2312–22.CrossRefGoogle Scholar
  37. 37.
    Beckloff N, Laube D, Castro T, et al. Activity of an antimicrobial peptide mimetic against planktonic and biofilm cultures of oral pathogens. Antimicrob Agents Chemother. 2007;51(11):4125–32.CrossRefGoogle Scholar
  38. 38.
    Hua J, Scott R, Diamond G. Activity of antimicrobial peptide mimetics in the oral cavity: II. Activity against periopathogenic biofilms and anti-inflammatory activity. Mol Oral Microbiol. 2010;25(6):426–32.CrossRefGoogle Scholar
  39. 39.
    Leszczyńska K, Namiot D, Byfield FJ, et al. Antibacterial activity of the human host defence peptide LL-37 and selected synthetic cationic lipids against bacteria associated with oral and upper respiratory tract infections. J Antimicrob Chemoth. 2013;68(3):610–8.CrossRefGoogle Scholar
  40. 40.
    Murugan RN, Jacob B, Ahn M, et al. De novo design and synthesis of ultra-short peptidomimetic antibiotics having dual antimicrobial and anti-Inflammatory activities. PloS One. 2013;8(11):e80025.CrossRefGoogle Scholar
  41. 41.
    Padhee S, Smith C, Wu H, et al. The development of antimicrobial α-AApeptides that suppress proinflammatory immune responses. Chem Bio Chem. 2014;15(5):688–94.CrossRefGoogle Scholar
  42. 42.
    Matsuzaki K. Control of cell selectivity of antimicrobial peptides. BBA-Biomembranes. 2009;1788(8):1687–92.CrossRefGoogle Scholar
  43. 43.
    Lee EK, Kim Y-C, Nan YH, Shin SY. Cell selectivity, mechanism of action and LPS-neutralizing activity of bovine myeloid antimicrobial peptide-18 (BMAP-18) and its analogs. Peptides. 2011;32(6):1123–30.CrossRefGoogle Scholar
  44. 44.
    Nan YH, Bang J-K, Jacob B, Park I-S, Shin SY. Prokaryotic selectivity and LPS-neutralizing activity of short antimicrobial peptides designed from the human antimicrobial peptide LL-37. Peptides. 2012;35(2):239–47.CrossRefGoogle Scholar
  45. 45.
    Wang G, Elliott M, Cogen AL, Ezell EL, Gallo RL, Hancock RE. Structure, dynamics, and antimicrobial and immune modulatory activities of human LL-23 and its single-residue variants mutated on the basis of homologous primate cathelicidins. Biochemistry. 2012;51(2):653–64.CrossRefGoogle Scholar
  46. 46.
    Park KH, Nan YH, Park Y, et al. Cell specificity, anti-inflammatory activity, and plausible bactericidal mechanism of designed Trp-rich model antimicrobial peptides. BBA-Biomembranes. 2009;1788(5):1193–203.CrossRefGoogle Scholar
  47. 47.
    Frecer V, Ho B, Ding J. De novo design of potent antimicrobial peptides. Antimicrob Agents Chemother. 2004;48(9):3349–57.CrossRefGoogle Scholar
  48. 48.
    Lee E, Kim J-K, Shin S, et al. Enantiomeric 9-mer peptide analogs of protaetiamycine with bacterial cell selectivities and anti-inflammatory activities. J Pept Sci. 2011;17(10):675–82.CrossRefGoogle Scholar
  49. 49.
    Wang P, Nan YH, Yang S-T, et al. Cell selectivity and anti-inflammatory activity of a Leu/Lys-rich α-helical model antimicrobial peptide and its diastereomeric peptides. Peptides. 2010;31(7):1251–61.CrossRefGoogle Scholar
  50. 50.
    Wei L, Wu J, Liu H, et al. A mycobacteriophage-derived trehalose-6, 6'-dimycolate-binding peptide containing both antimycobacterial and anti-inflammatory abilities. FASEB J. 2013;27(8):3067–77.CrossRefGoogle Scholar
  51. 51.
    Eriksson OS, Geörg M, Sjölinder H, et al. Identification of cell-penetrating peptides that are bactericidal to Neisseria meningitidis and prevent inflammatory responses upon infection. Antimicrob Agents Chemother. 2013;57(8):3704–12.CrossRefGoogle Scholar
  52. 52.
    Chow LN, Choi K-YG, Piyadasa H, et al. Human cathelicidin LL-37-derived peptide IG-19 confers protection in a murine model of collagen-induced arthritis. Mol Immunol. 2014;57(2):86-92.CrossRefGoogle Scholar
  53. 53.
    Jacob B, Park I-S, Bang J-K, Shin SY. Short KR-12 analogs designed from human cathelicidin LL-37 possessing both antimicrobial and antiendotoxic activities without mammalian cell toxicity. J Pept Sci. 2013;19(11):700–7.CrossRefGoogle Scholar
  54. 54.
    Ciornei CD, Sigurdardóttir T, Schmidtchen A, Bodelsson M. Antimicrobial and chemoattractant activity, lipopolysaccharide neutralization, cytotoxicity, and inhibition by serum of analogs of human cathelicidin LL-37. Antimicrob Agents Chemother. 2005;49(7):2845–50.CrossRefGoogle Scholar
  55. 55.
    Sigurdardottir T, Andersson P, Davoudi M, Malmsten M, Schmidtchen A, Bodelsson M. In silico identification and biological evaluation of antimicrobial peptides based on human cathelicidin LL-37. Antimicrob Agents Chemother. 2006;50(9):2983–9.CrossRefGoogle Scholar
  56. 56.
    McInturff JE, Wang S-J, Machleidt T, et al. Granulysin-derived peptides demonstrate antimicrobial and anti-inflammatory effects against Propionibacterium acnes. J Invest Dermatol. 2005;125(2):256–63.Google Scholar
  57. 57.
    Wang C-Q, Yang C-S, Yang Y, Pan F, He L-Y, Wang A-M. An apolipoprotein E mimetic peptide with activities against multidrug-resistant bacteria and immunomodulatory effects. J Pept Sci. 2013;19(12):745–50.CrossRefGoogle Scholar
  58. 58.
    Papareddy P, Rydengård V, Pasupuleti M, et al. Proteolysis of human thrombin generates novel host defense peptides. PLoS Pathog. 2010;6(4):e1000857.CrossRefGoogle Scholar
  59. 59.
    Papareddy P, Kalle M, Singh S, Mörgelin M, Schmidtchen A, Malmsten M. An antimicrobial helix A-derived peptide of heparin cofactor II blocks endotoxin responses in vivo. BBA-Biomembranes. 2014;1838(5):1225–34.CrossRefGoogle Scholar
  60. 60.
    Fox JL. Antimicrobial peptides stage a comeback. Nat Biotechnol. 2013;31(5):379–82.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of PharmacyNational University of SingaporeSingaporeSingapore

Personalised recommendations