A Coupled k-Nearest Neighbor Algorithm for Multi-label Classification

  • Chunming LiuEmail author
  • Longbing Cao
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9077)


ML-\(k\)NN is a well-known algorithm for multi-label classification. Although effective in some cases, ML-\(k\)NN has some defect due to the fact that it is a binary relevance classifier which only considers one label every time. In this paper, we present a new method for multi-label classification, which is based on lazy learning approaches to classify an unseen instance on the basis of its \(k\) nearest neighbors. By introducing the coupled similarity between class labels, the proposed method exploits the correlations between class labels, which overcomes the shortcoming of ML-\(k\)NN. Experiments on benchmark data sets show that our proposed Coupled Multi-Label \(k\) Nearest Neighbor algorithm (CML-\(k\)NN) achieves superior performance than some existing multi-label classification algorithms.


Multi-label Coupled Classification Nearest neighbor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boriah, S., Chandola, V., Kumar, V.: Similarity measures for categorical data: A comparative evaluation. red 30(2), 3 (2008)Google Scholar
  2. 2.
    Boutell, M.R., Luo, J., Shen, X., Brown, C.M.: Learning multi-label scene classification. Pattern Recognition 37(9), 1757–1771 (2004)CrossRefGoogle Scholar
  3. 3.
    Brinker, K., Hüllermeier, E.: Case-based multilabel ranking. In: IJCAI, pp. 702–707 (2007)Google Scholar
  4. 4.
    Cao, L.: Coupling learning of complex interactions. Information Processing & Management (2014)Google Scholar
  5. 5.
    Cao, L.: Non-iidness learning in behavioral and social data. The Computer Journal 57(9), 1358–1370 (2014)CrossRefGoogle Scholar
  6. 6.
    Cao, L., Ou, Y., Yu, P.S.: Coupled behavior analysis with applications. IEEE Transactions on Knowledge and Data Engineering 24(8), 1378–1392 (2012)CrossRefGoogle Scholar
  7. 7.
    Cheng, W., Hüllermeier, E.: Combining instance-based learning and logistic regression for multilabel classification. Machine Learning 76(2–3), 211–225 (2009)CrossRefGoogle Scholar
  8. 8.
    Liu, C., Cao, L., Yu, P.S.: Coupled fuzzy k-nearest neighbors classification of imbalanced non-iid categorical data. In: 2014 International Joint Conference on Neural Networks (IJCNN), pp. 1122–1129. IEEE (2014)Google Scholar
  9. 9.
    Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. Machine Learning 85(3), 333–359 (2011)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Schapire, R.E., Singer, Y.: Boostexter: A boosting-based system for text categorization. Machine Learning 39(2–3), 135–168 (2000)CrossRefzbMATHGoogle Scholar
  11. 11.
    Spyromitros, E., Tsoumakas, G., Vlahavas, I.P.: An Empirical Study of Lazy Multilabel Classification Algorithms. In: Darzentas, J., Vouros, G.A., Vosinakis, S., Arnellos, A. (eds.) SETN 2008. LNCS (LNAI), vol. 5138, pp. 401–406. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  12. 12.
    Tsoumakas, G., Katakis, I.: Multi-label classification: An overview. International Journal of Data Warehousing and Mining (IJDWM) 3(3), 1–13 (2007)CrossRefGoogle Scholar
  13. 13.
    Vembu, S., Gärtner, T.: Label ranking algorithms: A survey. In: Preference learning, pp. 45–64. Springer (2011)Google Scholar
  14. 14.
    Wang, C., Cao, L., Wang, M., Li, J., Wei, W., Ou, Y.: Coupled nominal similarity in unsupervised learning. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management, pp. 973–978. ACM (2011)Google Scholar
  15. 15.
    Wieczorkowska, A., Synak, P., Raś, Z.W.: Multi-label classification of emotions in music. In: Intelligent Information Processing and Web Mining, pp. 307–315. Springer (2006)Google Scholar
  16. 16.
    Zhang, M.L., Zhou, Z.H.: Multilabel neural networks with applications to functional genomics and text categorization. IEEE Transactions on Knowledge and Data Engineering 18(10), 1338–1351 (2006)CrossRefGoogle Scholar
  17. 17.
    Zhang, M.L., Zhou, Z.H.: Ml-knn: A lazy learning approach to multi-label learning. Pattern Recognition 40(7), 2038–2048 (2007)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.AAI, University of Sydney TechnologySydneyAustralia

Personalised recommendations