Response Surface Methodology: A Review of Applications to Risk Assessment

  • Teresa A. Oliveira
  • Conceição Leal
  • Amílcar Oliveira
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 136)

Abstract

Risk Analysis has assumed a crucial relevance over the past few years, particularly in dynamical systems with increasing complexity. Thanks to recent technological advances, the use of simulation techniques to estimate models has become the norm rather than the exception. These simulated models are used to predict the behavior of a system, to compute the probability of occurrence of a specific event and to predict the consequence of the said event. Uncertainty associated with the simulation, either in model parameters or in experimental data, requires its quantification as a prerequisite in probabilistic risk assessment. The computational costs of numerical simulations are often very high, thus the use of metamodels arises as a pressing necessity. Response Surface Methodology is known to be a suitable tool, both for the estimation of metamodels for the behaviors of systems and risk assessment, and for the quantification of uncertainty. A review of applications and of various aspects on the use of Response Surface Methodology in Risk Assessment Systems will be presented.

Keywords

Monte Carlo method Risk analysis RSM Sensitivity analysis  Uncertainty 

References

  1. 1.
    Balakrishnan, S., Roy, A., Ierapetritou, M.G., Flach, G.P., Georgopoulos, P.G.: Uncertainty reduction and characterization for complex environmental fate and transport models: an empirical Bayesian framework incorporating the stochastic response surface method. Water Resour. Res. 39(12), 1350 (2003)CrossRefGoogle Scholar
  2. 2.
    Bauer, K.W., Parnell, G.S., Meyers, D.A.: Response surface methodology as a sensitivity analysis tool in decision analysis. J. Multi-Criteria Decis. Anal. 8(3), 162–180 (1999)CrossRefMATHGoogle Scholar
  3. 3.
    Baysal, R.E., Nelson, B.L., Staum, J.: Response surface methodology for simulating hedging and trading strategies. In: Simulation Conference, WSC, Winter, December 2008, pp. 629–637. IEEE (2008)Google Scholar
  4. 4.
    Bouda, M., Rousseau, A.N., Konan, B., Gagnon, P., Gumiere, S.J.: Bayesian uncertainty analysis of the distributed hydrological model HYDROTEL. J. Hydrol. Eng. 17(9), 1021–1032 (2011)CrossRefGoogle Scholar
  5. 5.
    Box, G.E., Draper, N.R.: Empirical Model-Building and Response Surfaces. Wiley, New York (1987)MATHGoogle Scholar
  6. 6.
    Box, G.E., Wilson, K.B.: On the experimental attainment of optimum conditions. J. R. Stat. Soc. Ser. B (Methodological) 13(1), 1–45 (1951)MATHMathSciNetGoogle Scholar
  7. 7.
    Bucher, C.G., Bourgund, U.: A fast and efficient response surface approach for structural reliability problems. Struct. Saf. 7(1), 57–66 (1990)CrossRefGoogle Scholar
  8. 8.
    Cheung, S.H., Oliver, T.A., Prudencio, E.E., Prudhomme, S., Moser, R.D.: Bayesian uncertainty analysis with applications to turbulence modeling. Reliab. Eng. Syst. Saf. 96(9), 1137–1149 (2011)CrossRefGoogle Scholar
  9. 9.
    Der Kiureghian, A.: Bayesian analysis of model uncertainty in structural reliability. In: Reliability and Optimization of Structural Systems’90, pp. 211–221. Springer, Berlin (1991)Google Scholar
  10. 10.
    Efron, B.: The Jackknife, The Bootstrap and Other Resampling Plans. Society for Industrial and Applied Mathematics, Philadelphia (1982)CrossRefGoogle Scholar
  11. 11.
    El-Masri, H.A., Reardon, K.F., Yang, R.S.: Integrated approaches for the analysis of toxicologic interactions of chemical mixtures. CRC Crit. Rev. Toxicol. 27(2), 175–197 (1997)CrossRefGoogle Scholar
  12. 12.
    Ernst, O.G., Mugler, A., Starkloff, H.J., Ullmann, E.: On the convergence of generalized polynomial chaos expansions. ESAIM: Math. Model. Numer. Anal. 46(02), 317–339 (2012)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Feraille, M., Marrel, A.: Prediction under uncertainty on a mature field. Oil Gas Sci. Technol.–Rev. IFP Energ. Nouv. 67(2), 193–206 (2012)CrossRefGoogle Scholar
  14. 14.
    Frey, H.C., Mokhtari, A., Zheng, J.: Recommended practice regarding selection, application, and interpretation of sensitivity analysis methods applied to food safety process risk models. US Department of Agriculture. http://www.ce.ncsu.edu/risk/Phase3Final.pdf (2004)
  15. 15.
    Ghanem, R.G., Spanos, P.D.: Stochastic Finite Elements: A Spectral Approach. Springer, New York (1991)CrossRefMATHGoogle Scholar
  16. 16.
    Groten, J.P., Feron, V.J., Sühnel, J.: Toxicology of simple and complex mixtures. Trends Pharmacol. Sci. 22(6), 316–322 (2001)CrossRefGoogle Scholar
  17. 17.
    Gupta, S., Manohar, C.S.: An improved response surface method for the determination of failure probability and importance measures. Struct. Saf. 26(2), 123–139 (2004)CrossRefGoogle Scholar
  18. 18.
    Ha, T., Garland, W.J.: Loss of coolant accident (LOCA) analysis for mcmaster nuclear reactor through probabilistic risk assessment (PRA). In: Proceedings of 27th Annual Conference of the Canadian Nuclear Society Toronto, Ontario, Canada, 11–14 June 2006Google Scholar
  19. 19.
    Helton, J.C.: Uncertainty and sensitivity analysis techniques for use in performance assessment for radioactive waste disposal. Reliab. Eng. Syst. Saf. 42(2), 327–367 (1993)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Hoffman, F.O., Miller, C.W., Ng, Y.C.: Uncertainties in radioecological assessment models (No. IAEA-SR-84/4; CONF-831032-1). Oak Ridge National Laboratory, TN (USA); Lawrence Livermore National Laboratory, CA, USA (1983)Google Scholar
  21. 21.
    Hosmer Jr, D.W., Lemeshow, S., Sturdivant, R.X.: Applied Logistic Regression, 3rd edn. Wiley, New York (2013)CrossRefMATHGoogle Scholar
  22. 22.
    Iervolino, I., Fabbrocino, G., Manfredi, G.: Fragility of standard industrial structures by a response surface based method. J. Earthq. Eng. 8(06), 927–945 (2004)Google Scholar
  23. 23.
    Iooss, B., Van Dorpe, F., Devictor, N.: Response surfaces and sensitivity analyses for an environmental model of dose calculations. Reliab. Eng. Syst. Saf. 91(10), 1241–1251 (2006)CrossRefGoogle Scholar
  24. 24.
    Isukapalli, S.S., Georgopoulos, P.G.: Computational Methods for Sensitivity and Uncertainty Analysis for Environmental and Biological Models. Environmental and Occupational Health Sciences Institute, New Jersey (2001)Google Scholar
  25. 25.
    Isukapalli, S.S., Roy, A., Georgopoulos, P.G.: Stochastic response surface methods (SRSMs) for uncertainty propagation: application to environmental and biological systems. Risk Anal. 18(3), 351–363 (1998)CrossRefGoogle Scholar
  26. 26.
    Kennedy, A.B., Westerink, J.J., Smith, J.M., Hope, M.E., Hartman, M., Taflanidis, A.A., Dawson, C.: Tropical cyclone inundation potential on the Hawaiian Islands of Oahu and Kauai. Ocean Model. 52, 54–68 (2012)CrossRefGoogle Scholar
  27. 27.
    Kleijnen, J.P., van Ham, G., Rotmans, J.: Techniques for sensitivity analysis of simulation models: a case study of the \(\mathit{CO}_2\) greenhouse effect. Simulation 58(6), 410–417 (1992)Google Scholar
  28. 28.
    Liel, A.B., Haselton, C.B., Deierlein, G.G., Baker, J.W.: Incorporating modeling uncertainties in the assessment of seismic collapse risk of buildings. Struct. Saf. 31(2), 197–211 (2009)CrossRefGoogle Scholar
  29. 29.
    Myers, R.H., Montgomery, D.C., Anderson-Cook, C.M.: Response Surface Methodology: Process and Product Optimization Using Designed Experiments. Wiley, New York (2009)Google Scholar
  30. 30.
    Oladyshkin, S., Nowak, W.: Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion. Reliab. Eng. Syst. Saf. 106, 179–190 (2012)CrossRefGoogle Scholar
  31. 31.
    Oladyshkin, S., Class, H., Helmig, R., Nowak, W.: Highly efficient tool for probabilistic risk assessment of CCS joint with injection design. Comput. Geosci. 13, 451–467 (2009)CrossRefGoogle Scholar
  32. 32.
    Oladyshkin, S., Class, H., Helmig, R., Nowak, W.: An integrative approach to robust design and probabilistic risk assessment for \(\mathit{CO}_2\) storage in geological formations. Comput. Geosci. 15(3), 565–577 (2011)Google Scholar
  33. 33.
    Oladyshkin, S., Class, H., Helmig, R., Nowak, W.: A concept for data-driven uncertainty quantification and its application to carbon dioxide storage in geological formations. Adv. Water Resour. 34(11), 1508–1518 (2011)Google Scholar
  34. 34.
    Oladyshkin, S., Class, H., Nowak, W.: Bayesian updating via bootstrap filtering combined with data-driven polynomial chaos expansions: methodology and application to history matching for carbon dioxide storage in geological formations. Comput. Geosci. 17, 1–17 (2013)Google Scholar
  35. 35.
    Patel, T., Telesca, D., George, S., Nel, A.: Toxicity profiling of engineered nanomaterials via multivariate dose response surface modeling (2011)Google Scholar
  36. 36.
    Que, J.: Response surface modelling of Monte-Carlo fire data. Doctoral dissertation, Victoria University (2003)Google Scholar
  37. 37.
    Risso, F., Schiozer, D.: Risk analysis of petroleum fields using Latin hypercube, Monte carol and derivative tree techniques. J. Pet. Gas Explor. 1(1), 014–021 (2011)Google Scholar
  38. 38.
    Rohmer, J., Bouc, O.: A response surface methodology to address uncertainties in cap rock failure assessment for \(\mathit{CO}_2\) geological storage in deep aquifers. Int. J. Greenh. Gas Control 4(2), 198–208 (2010)Google Scholar
  39. 39.
    Rossetto, T., Elnashai, A.: A new analytical procedure for the derivation of displacement-based vulnerability curves for populations of RC structures. Eng. Struct. 27(3), 397–409 (2005)CrossRefGoogle Scholar
  40. 40.
    Royal Society: Risk: Analysis, Perception and Management. Report of a Royal Society Study Group, London, The Royal Society, pp. 89–134 (1992)Google Scholar
  41. 41.
    Song, X., Zhan, C., Xia, J., Kong, F.: An efficient global sensitivity analysis approach for distributed hydrological model. J. Geogr. Sci. 22(2), 209–222 (2012)CrossRefGoogle Scholar
  42. 42.
    Steffen, O.K.H., Contreras, L.F., Terbrugge, P.J., Venter, J.: A risk evaluation approach for pit slope design. 42nd US rock mechanics symposium and 2nd U.S.-Canada Rock Mechanics Symposium, held in San Francisco, 29 June–2 July 2008Google Scholar
  43. 43.
    Taflanidis, A.A., Kennedy, A.B., Westerink, J.J., Smith, J., Cheung, K.F., Hope, M., Tanaka, S.: Probabilistic hurricane surge risk estimation through high fidelity numerical simulation and response surface approximations. ASCE April 2011Google Scholar
  44. 44.
    Tanase, F.N.: Seismic performance assessment using response surface methodology. Constr.: J. Civ. Eng. Res. 2, 13 (2012)Google Scholar
  45. 45.
    Wang, X., Song Z.: Reliability analysis of evacuation B improved response surface method. In: 2nd International Conference on Electronic and Mechanical Engineering and Information Technology (EMEIT-2012). Published by Atlantis Press, Paris, France (2012)Google Scholar
  46. 46.
    Wiener, N.: The homogeneous chaos. Am. J. Math. 60(4), 897–936 (1938)CrossRefMathSciNetGoogle Scholar
  47. 47.
    Wilde, M.L., Kümmerer, K., Martins, A.F.: Multivariate optimization of analytical methodology and a first attempt to an environmental risk assessment of \(\beta \)-\(blockers\) in hospital wastewater. J. Braz. Chem. Soc. 23(9), 1732–1740 (2012)CrossRefGoogle Scholar
  48. 48.
    Xiu, D., Karniadakis, G.E.: Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos. Comput. Methods Appl. Mech. Eng. 191(43), 4927–4948 (2002)Google Scholar
  49. 49.
    Xiu, D., Karniadakis, G.E.: The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24(2), 619–644 (2002)Google Scholar
  50. 50.
    Xiu, D., Karniadakis, G.E.: Modeling uncertainty in flow simulations via generalized polynomial chaos. J. Comput. Phys. 187(1), 137–167 (2003)Google Scholar
  51. 51.
    Xiu, D., Karniadakis, G.E.: A new stochastic approach to transient heat conduction modeling with uncertainty. Int. J. Heat Mass Transf. 46(24), 4681–4693 (2003)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Teresa A. Oliveira
    • 1
    • 2
  • Conceição Leal
    • 2
  • Amílcar Oliveira
    • 1
    • 2
  1. 1.CEAULLisbonPortugal
  2. 2.Open UniversityLisbonPortugal

Personalised recommendations