Advertisement

Monitoring Environmental Risk by a Methodology Based on Control Charts

  • Helton Saulo
  • Victor Leiva
  • Fabrizio Ruggeri
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 136)

Abstract

We propose a methodology based on control charts when the contaminant concentration follows a Birnbaum-Saunders distribution, which is implemented in the R software. We investigate the performance of this methodology through Monte Carlo simulations. An example with real-world data is given as an illustration of the proposed methodology.

Keywords

Birnbaum-Saunders distribution Contaminant concentration Maximum likelihood and moment estimation Monte Carlo simulation R software X-bar charts. 

Notes

Acknowledgments

The authors wish to thank the Editors of the volume “Risk Assessment Challenges: Theory and Practice” of Springer Proceedings in Mathematics and Statistics, Dr. Christos Kitsos and Dr. Teresa A. Oliveira, and three anonymous referees for their constructive comments on an earlier version of this manuscript which resulted in this improved version. This research was partially supported by FONDECYT 1120879 grant from Chile, and by CAPES, CNPq and FACEPE grants from Brazil. H. Saulo thanks Universidade Federal de Goiás from Brazil for supporting this research.

References

  1. 1.
    Aarset, M.V.: How to identify a bathtub hazard rate. IEEE Trans. Reliab. 36, 106–108 (1987)CrossRefMATHGoogle Scholar
  2. 2.
    Azevedo, C., Leiva, V., Athayde, E., Balakrishnan, N.: Shape and change point analyses of the Birnbaum-Saunders-\(t\) hazard rate and associated estimation. Comput. Stat. Data Anal. 56, 3887–3897 (2012)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Balakrishnan, N., Leiva, V., López, J.: Acceptance sampling plans from truncated life tests from generalized Birnbaum-Saunders distribution. Commun. Stat. Simul. Comput. 36, 643–656 (2007)CrossRefMATHGoogle Scholar
  4. 4.
    Barros, M., Paula, G.A., Leiva, V.: An R implementation for generalized Birnbaum-Saunders distributions. Comput. Stat. Data Anal. 53, 1511–1528 (2009)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Barros, M., Leiva, V., Ospina, R., Tsuyuguchi, A.: Goodness-of-fit tests for the Birnbaum-Saunders distribution with censored reliability data. IEEE Trans. Reliab. 63, 543–554 (2014)Google Scholar
  6. 6.
    Bhatti, C.R.: The Birnbaum-Saunders autoregressive conditional duration model. Math. Comput. Simul. 80, 2062–2078 (2010)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Box, G.E., Cox, D.R.: An analysis of transformations. J. R. Stat. Soc. B 26, 211–246 (1964)MATHMathSciNetGoogle Scholar
  8. 8.
    Ferreira, M., Gomes, M.I., Leiva, V.: On an extreme value version of the Birnbaum-Saunders distribution. Revstat Stat. J. 10, 181–210 (2012)MATHMathSciNetGoogle Scholar
  9. 9.
    Fierro, R., Leiva, V., Ruggeri, F., Sanhueza, A.: On a Birnbaum-Saunders distribution arising from a non-homogeneous Poisson process. Stat. Probab. Lett. 83, 1233–1239 (2013)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Figueiredo, F., Gomes, M.I.: The skew-normal distribution in SPC. Revstat Stat. J. 11, 83–104 (2013)MathSciNetGoogle Scholar
  11. 11.
    Grigg, O.A., Farewell, V.T.: A risk-adjusted sets method for monitoring adverse medical outcomes. Stat. Med. 23, 1593–1602 (2004)CrossRefGoogle Scholar
  12. 12.
    Huang, S., Qu, Y.: The loss in power when the test of differential expression is performed under a wrong scale. J. Comput. Biol. 13, 786–797 (2006)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Johnson, N.L., Kotz, S., Balakrishnan, N.: Continuous Univariate Distributions. Wiley, New York (1995)MATHGoogle Scholar
  14. 14.
    Kelmansky, D., Martinez, E., Leiva, V.: A new variance stabilizing transformation for gene expression data analysis. Stat. Appl. Genet. Mol. Biol. 12, 653–666 (2013)MathSciNetGoogle Scholar
  15. 15.
    Kundu, D., Kannan, N., Balakrishnan, N.: On the hazard function of Birnbaum-Saunders distribution and associated inference. Comput. Stat. Data Anal. 52, 2692–2702 (2008)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Leiva, V., Barros, M., Paula, G.A., Sanhueza, A.: Generalized Birnbaum-Saunders distributions applied to air pollutant concentration. Environmetrics 19, 235–249 (2008)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Leiva, V., Sanhueza, A., Angulo, J.M.: A length-biased version of the Birnbaum-Saunders distribution with application in water quality. Stoch. Environ. Res. Risk Assess. 23, 299–307 (2009)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Leiva, V., Sanhueza, A., Kelmansky, S., Martinez, E.: On the glog-normal distribution and its association with the gene expression problem. Comput. Stat. Data Anal. 53, 1613–1621 (2009)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Leiva, V., Vilca, F., Balakrishnan, N., Sanhueza, A.: A skewed sinh-normal distribution and its properties and application to air pollution. Commun. Stat. Theory Method 39, 426–443 (2010)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Leiva, V., Marchant, C., Saulo, H., Aslam, M., Rojas, F.: Capability indices for Birnbaum-Saunders processes applied to electronic and food industries. J. Appl. Stat. 41, 1881–1902 (2014)Google Scholar
  21. 21.
    Leiva, V., Saulo, H., Leao, J., Marchant, C.: A family of autoregressive conditional duration models applied to financial data. Comput. Stat. Data Anal. 79, 175–191 (2014)Google Scholar
  22. 22.
    Lio, Y.L., Park, C.: A bootstrap control chart for Birnbaum-Saunders percentiles. Qual. Reliab. Eng. Int. 24, 585–600 (2008)CrossRefGoogle Scholar
  23. 23.
    Lio, Y.L., Tsai, T.R., Wu, S.J.: Acceptance sampling plans from truncated life tests based on the Birnbaum-Saunders distribution for percentiles. Commun. Stat. Simul. Comput. 39, 1–18 (2008)MathSciNetGoogle Scholar
  24. 24.
    Manly, B.F.J.: Statistics for Environmental Science and Management. Chapman & Hall, Boca Raton (2009)MATHGoogle Scholar
  25. 25.
    Marchant, C., Leiva, V., Cavieres, M.F., Sanhueza, A.: Air contaminant statistical distributions with application to PM10 in Santiago, Chile. Rev. Environ. Contam. Toxicol. 223, 1–31 (2013)Google Scholar
  26. 26.
    Morrison, L.W.: The use of control charts to interpret environmental monitoring data. Nat. Areas J. 28, 66–73 (2008)CrossRefGoogle Scholar
  27. 27.
    Montgomery, D.: Introduction to Statical Quality Control. Wiley, New York (2008)Google Scholar
  28. 28.
    Ng, H.K.T., Kundu, D., Balakrishnan, N.: Modified moment estimation for the two-parameter Birnbaum-Saunders distribution. Comput. Stat. Data Anal. 43, 283–298 (2003)CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Ott, W.R.: A physical explanation of the lognormality of pollution concentrations. J. Air Waste Manag. Assoc. 40, 1378–1383 (1990)CrossRefGoogle Scholar
  30. 30.
    Raaijmakers, F.J.M.: The lifetime of a standby system of units having the Birnbaum-Saunders distribution. J. Appl. Probab. 17, 490–497 (1980)CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Raaijmakers, F.J.M.: Reliability of standby system for units with the Birnbaum-Saunders distribution. IEEE Trans. Reliab. 30, 198–199 (1981)CrossRefGoogle Scholar
  32. 32.
    Saulo, H., Leiva, V., Ziegelmann, F.A., Marchant, C.: A nonparametric method for estimating asymmetric densities based on skewed Birnbaum-Saunders distributions applied to environmental data. Stoch. Environ. Res. Risk Assess. 27, 1479–1491 (2013)CrossRefGoogle Scholar
  33. 33.
    Vilca, F., Sanhueza, A., Leiva, V., Christakos, G.: An extended Birnbaum-Saunders model and its application in the study of environmental quality in Santiago, Chile. Stoch. Environ. Res. Risk Assess. 24, 771–782 (2010)CrossRefGoogle Scholar
  34. 34.
    Vilca, F., Santana, L., Leiva, V., Balakrishnan, N.: Estimation of extreme percentiles in Birnbaum-Saunders distributions. Comput. Stat. Data Anal. 55, 1665–1678 (2011)CrossRefMathSciNetGoogle Scholar
  35. 35.
    Woodall, W.H.: The use of control charts in health-care and public-health surveillance. J. Qual. Tech. 38, 89–104 (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Instituto de Matemática e EstatísticaUniversidade Federal de GoiásGoianiaBrazil
  2. 2.Facultad de Ingeniería y CienciasUniversidad Adolfo IbáñezViña del MarChile
  3. 3.CNR IMATIMilanoItaly

Personalised recommendations