Skip to main content

A Benders Approach to the Minimum Chordal Completion Problem

  • Conference paper
  • First Online:
Book cover Integration of AI and OR Techniques in Constraint Programming (CPAIOR 2015)

Abstract

This paper introduces an integer programming approach to the minimum chordal completion problem. This combinatorial optimization problem, although simple to pose, presents considerable computational difficulties and has been tackled mostly by heuristics. In this paper, an integer programming approach based on Benders decomposition is presented. Computational results show that the improvement in solution times over a simple branch-and-bound algorithm is substantial. The results also indicate that the value of the solutions obtained by a state-of-the-art heuristic can be in some cases significantly far away from the previously unknown optimal solutions obtained via the Benders approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beeri, C., Fagin, R., Maier, D., Yannakakis, M.: On the desirability of acyclic database schemes. J. ACM 30(3), 479–513 (1983). http://doi.acm.org/10.1145/2402.322389

    Article  MathSciNet  MATH  Google Scholar 

  2. Benders, J.: Partitioning procedures for solving mixed-variables programming problems. Numerische Mathematik 4(1), 238–252 (1962). http://dx.doi.org/10.1007/BF01386316

    Article  MathSciNet  MATH  Google Scholar 

  3. Berry, A., Bordat, J.P., Heggernes, P., Simonet, G., Villanger, Y.: A wide-range algorithm for minimal triangulation from an arbitrary ordering. Journal of Algorithms 58(1), 33–66 (2006). http://www.sciencedirect.com/science/article/pii/S0196677404001142

    Article  MathSciNet  MATH  Google Scholar 

  4. Berry, A., Heggernes, P., Simonet, G.: The minimum degree heuristic and the minimal triangulation process. In: Bodlaender, H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 58–70. Springer, Heidelberg (2003). http://www.dx.doi.org/10.1007/978-3-540-39890-5_6

    Chapter  Google Scholar 

  5. Blair, J.R., Heggernes, P., Telle, J.A.: A practical algorithm for making filled graphs minimal. Theoretical Computer Science 250(12), 125–141 (2001). http://www.sciencedirect.com/science/article/pii/S0304397599001267

    Article  MathSciNet  MATH  Google Scholar 

  6. Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybernetica 11, 1–23 (1993)

    MathSciNet  MATH  Google Scholar 

  7. Bodlaender, H.L., Kloks, T., Kratsch, D., Mueller, H.: Treewidth and minimum fill-in on d-trapezoid graphs (1998)

    Google Scholar 

  8. Bodlaender, H.L., Heggernes, P., Villanger, Y.: Faster parameterized algorithms for Minimum Fill-In. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 282–293. Springer, Heidelberg (2008). http://dx.doi.org/10.1007/978-3-540-92182-0_27

    Chapter  MATH  Google Scholar 

  9. Broersma, H., Dahlhaus, E., Kloks, T.: Algorithms for the treewidth and minimum fill-in of hhd-free graphs. In: Möhring, R.H. (ed.) WG 1997. LNCS, vol. 1335, pp. 109–117. Springer, Heidelberg (1997). http://dx.doi.org/10.1007/BFb0024492

    Chapter  MATH  Google Scholar 

  10. Chandran, L.S., Ibarra, L., Ruskey, F., Sawada, J.: Generating and characterizing the perfect elimination orderings of a chordal graph. Theor. Comput. Sci. 307(2), 303–317 (2003). http://dx.doi.org/10.1016/S0304-3975(03)00221-4

    Article  MathSciNet  MATH  Google Scholar 

  11. Chang, M.S.: Algorithms for maximum matching and minimum fill-in on chordal bipartite graphs. In: Nagamochi, H., Suri, S., Igarashi, Y., Miyano, S., Asano, T. (eds.) ISAAC 1996. LNCS, vol. 1178, pp. 146–155. Springer, Heidelberg (1996). http://dx.doi.org/10.1007/BFb0009490

    Chapter  Google Scholar 

  12. Chung, F., Mumford, D.: Chordal completions of planar graphs. Journal of Combinatorial Theory, Series B 62(1), 96–106 (1994). http://www.sciencedirect.com/science/article/pii/S0095895684710562

    Article  MathSciNet  MATH  Google Scholar 

  13. Fomin, F.V., Villanger, Y.: Subexponential parameterized algorithm for minimum fill-in. In: Proceedings of the Twenty-third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, pp. 1737–1746. SIAM (2012), http://dl.acm.org/citation.cfm?id=2095116.2095254

  14. Fulkerson, D.R., Gross, O.A.: Incidence matrices and interval graphs. Pacific Journal of Mathematics 15(3), 835–855 (1965). http://projecteuclid.org/euclid.pjm/1102995572

    Article  MathSciNet  MATH  Google Scholar 

  15. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)

    MATH  Google Scholar 

  16. George, A., Liu, W.H.: The evolution of the minimum degree ordering algorithm. SIAM Rev. 31(1), 1–19 (1989). http://dx.doi.org/10.1137/1031001

    Article  MathSciNet  MATH  Google Scholar 

  17. Golumbic, M., Kaplan, H., Shamir, R.: Graph sandwich problems. Journal of Algorithms 19(3), 449–473 (1995). http://www.sciencedirect.com/science/article/pii/S0196677485710474

    Article  MathSciNet  MATH  Google Scholar 

  18. Grone, R., Johnson, C.R., Sá, E.M., Wolkowicz, H.: Positive definite completions of partial hermitian matrices. Linear Algebra and its Applications 58, 109–124 (1984). http://www.sciencedirect.com/science/article/pii/0024379584902076

    Article  MathSciNet  MATH  Google Scholar 

  19. Heggernes, P.: Minimal triangulations of graphs: A survey. Discrete Mathematics 306(3), 297–317 (2006). http://www.sciencedirect.com/science/article/pii/S0012365X05006060

    Article  MathSciNet  MATH  Google Scholar 

  20. Heggernes, P., Eisenstat, S.C., Kumfert, G., Pothen, A.: The computational complexity of the minimum degree algorithm (2001)

    Google Scholar 

  21. Hooker, J., Ottosson, G.: Logic-based benders decomposition. Mathematical Programming 96(1), 33–60 (2003). http://dx.doi.org/10.1007/s10107-003-0375-9

    Article  MathSciNet  MATH  Google Scholar 

  22. Kaplan, H., Shamir, R., Tarjan, R.E.: Tractability of parameterized completion problems on chordal and interval graphs: Minimum fill-in and physical mapping (extended abstract). SIAM J. Comput 28, 780–791 (1994)

    Google Scholar 

  23. Kim, S., Kojima, M., Mevissen, M., Yamashita, M.: Exploiting sparsity in linear and nonlinear matrix inequalities via positive semidefinite matrix completion. Mathematical Programming 129(1), 33–68 (2011). http://dx.doi.org/10.1007/s10107-010-0402-6

    Article  MathSciNet  MATH  Google Scholar 

  24. Kloks, T., Kratsch, D., Wong, C.: Minimum fill-in on circle and circular-arc graphs. Journal of Algorithms 28(2), 272–289 (1998). http://www.sciencedirect.com/science/article/pii/S0196677498909361

    Article  MathSciNet  MATH  Google Scholar 

  25. Lekkeikerker, C., Boland, J.: Representation of a finite graph by a set of intervals on the real line. Fundamenta Mathematicae 51, 45–64 (1962)

    Article  MathSciNet  Google Scholar 

  26. Mezzini, M., Moscarini, M.: Simple algorithms for minimal triangulation of a graph and backward selection of a decomposable markov network. Theoretical Computer Science 411(79), 958–966 (2010). http://www.sciencedirect.com/science/article/pii/S030439750900735X

    Article  MathSciNet  MATH  Google Scholar 

  27. Nakata, K., Fujisawa, K., Fukuda, M., Kojima, M., Murota, K.: Exploiting sparsity in semidefinite programming via matrix completion ii: implementation and numerical results. Mathematical Programming 95(2), 303–327 (2003). http://dx.doi.org/10.1007/s10107-002-0351-9

    Article  MathSciNet  MATH  Google Scholar 

  28. Nguyen, T.H., Bui, T.: Graph coloring benchmark instances. http://www.cs.hbg.psu.edu/txn131/graphcoloring.html (accessed: 14 July 2014)

  29. Peyton, B.W.: Minimal orderings revisited. SIAM J. Matrix Anal. Appl. 23(1), 271–294 (2001). http://dx.doi.org/10.1137/S089547989936443X

    Article  MathSciNet  MATH  Google Scholar 

  30. Rose, D., Tarjan, R., Lueker, G.: Algorithmic aspects of vertex elimination on graphs. SIAM Journal on Computing 5(2), 266–283 (1976). http://dx.doi.org/10.1137/0205021

    Article  MathSciNet  MATH  Google Scholar 

  31. Rose, D.J.: A graph-theoretic study of the numerical solution of sparse positive definite systems of linear equations. In: Graph Theory and Computing, pp. 183–217. Academic Press (1972), http://www.sciencedirect.com/science/article/pii/B9781483231877500180

  32. Sokhn, N., Baltensperger, R., Bersier, L.-F., Hennebert, J., Ultes-Nitsche, U.: Identification of chordless cycles in ecological networks. In: Glass, K., Colbaugh, R., Ormerod, P., Tsao, J. (eds.) Complex 2012. LNICST, vol. 126, pp. 316–324. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  33. Spinrad, J., Brandstdt, A., Stewart, L.: Bipartite permutation graphs. Discrete Applied Mathematics 18(3), 279–292 (1987). http://www.sciencedirect.com/science/article/pii/S0166218X87800033

    Article  MathSciNet  MATH  Google Scholar 

  34. Tarjan, R.E., Yannakakis, M.: Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J. Comput. 13(3), 566–579 (1984). http://dx.doi.org/10.1137/0213035

    Article  MathSciNet  MATH  Google Scholar 

  35. Uno, T., Satoh, H.: An efficient algorithm for enumerating chordless cycles and chordless paths. CoRR abs/1404.7610 (2014), http://arxiv.org/abs/1404.7610

  36. Yannakakis, M.: Computing the minimum fill-in is np-complete. SIAM Journal on Algebraic Discrete Methods 2(1), 77–79 (1981)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Bergman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Bergman, D., Raghunathan, A.U. (2015). A Benders Approach to the Minimum Chordal Completion Problem. In: Michel, L. (eds) Integration of AI and OR Techniques in Constraint Programming. CPAIOR 2015. Lecture Notes in Computer Science(), vol 9075. Springer, Cham. https://doi.org/10.1007/978-3-319-18008-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18008-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18007-6

  • Online ISBN: 978-3-319-18008-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics