Video Recommendation Using Neuro-Fuzzy on Social TV Environment

  • Duc Anh Nguyen
  • Trong Hai Duong
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 358)


Prior collaborative filtering (CF) methods based on neighbors’ ratings to predict a target user’s rating. In this work, we consider recommendation on the context of Social TV (STV). The watchers/users may either share, comment, rate, or tag videos they are interested in. Each video must be watched and rated by many users. For these assumptions, we proposed a novel model-based collaborative filtering using a fuzzy neural network to learn user’s social web behaviors for video recommendation on STV. We use netflix data-set to evaluate the proposed method. The result shown that the proposed approach is a significant effective method.


Ontology Smart TV Video Recommendation system and Neural network 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aroyo, L., Nixon, L., Dietze, S.: Television and the future internet: the No-Tube project. In: Future Internet Symposium (FIS) 2009, Berlin, Germany, September 1-3 (2009)Google Scholar
  2. 2.
    Nguyen, S.D., Ngo, K.N.: An Adaptive Input Data Space Parting Solution to the Synthesis of Neuro-Fuzzy Models. International Journal of Control, Automation, and Systems, IJCAS 6(6), 928–938 (2008)Google Scholar
  3. 3.
    Nguyen, S.D., Choi, S.B.: A new Neuro-Fuzzy Training Algorithm for Identifying Dynamic Characteristics of Smart Dampers. Smart Materials and Structures 21 (2012)Google Scholar
  4. 4.
    Pazzani, M.J., Billsus, D.: Content-based recommendation systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 325–341. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Resnick, P., Iacovou, N., Suchack, M., Bergstrom, P., Riedl, J.T.: GroupLens: an open architecture for collaborative filtering of netnews. In: Proceedings of the ACM Conference on Computer Supported Cooperative Work, pp. 175–186 (1994)Google Scholar
  6. 6.
    Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence, pp. 43–52 (1999)Google Scholar
  7. 7.
    Goldberg, K., Roeder, T., Gupta, D., Perkins, C.: Eigentaste: a constant time collaborative filtering algorithm. Information Retrieval 4(2), 133–151 (2001)CrossRefMATHGoogle Scholar
  8. 8.
    Smeaton, A.F., Over, P., Kraaij, W.: Evaluation campaigns and TRECVid. In: Proc. of the ACM MIR, pp. 321–330 (2006)Google Scholar
  9. 9.
    Barragáns-Martínez, A.B., Costa-Montenegro, E., Burguillo-Rial, J.C., Rey-López, M., Mikic-Fonte, F.A., Peleteiro-Ramallo, A.: A hybrid content-based and item-based collaborative filtering approach to recommend TV programs enhanced with singular value decomposition. Presented at Inf. Sci., 4290–4311 (2010)Google Scholar
  10. 10.
    Li, Q., Wang, J., Chen, Y.P., Lin, Z.: User comments for news recommendation in forum-based social media. Presented at Inf. Sci., 4929–4939 (2010)Google Scholar
  11. 11.
    Baeza-Yates, R., Ribeiro-Neto, B.: Modern information retrieval. Addison Wesley Longman Publisher (1999)Google Scholar
  12. 12.
    Brin, S., Motwani, R., Page, L., Winograd, T.: What can you do with a Web in your pocket. Bulletin of the IEEE Computer Society Technical Committee on Data Engineering, 37–47 (1998)Google Scholar
  13. 13.
    Del Corso, G.M., Gullí, A., Romani, F.: Ranking a stream of news. In: Proceedings of the 14th International Conference on World Wide Web (WWW), pp. 97–106 (2005)Google Scholar
  14. 14.
    Lavrenko, V., Schmill, M., Lawrie, D., Ogilvie, P., Jensen, D., Allan, J.: Language models for financial news recommendation. In: Proceedings of the Ninth International Conference on Information and Knowledge Management (CIKM), pp. 389–396 (2000)Google Scholar
  15. 15.
    Ardissono, L., Gena, C., Torasso, P., Bellifemine, F., Difino, A., Negro, B.: User modeling and recommendation techniques for personalized electronic program guides. In: Personalized Digital Television-Targeting Programs to Individual Viewers. Human-Computer Interaction Series, vol. 6, ch. 1, pp. 3–26. Kluwer Academic Publishers (2004)Google Scholar
  16. 16.
    Baudisch, P., Brueckner, L.: TV scout: Lowering the entry barrier to personalized TV program recommendation. In: De Bra, P., Brusilovsky, P., Conejo, R. (eds.) AH 2002. LNCS, vol. 2347, pp. 58–68. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Golub, G., Loan, C.V.: Matrix Computations, 3rd edn. Johns Hopkins Studies in Mathematical Sciences, Baltimore (1996)MATHGoogle Scholar
  18. 18.
    Duong, T.H., Uddin, M.N., Li, D., Jo, G.S.: A Collaborative Ontology-Based User Profiles System. In: Nguyen, N.T., Kowalczyk, R., Chen, S.-M. (eds.) ICCCI 2009. LNCS, vol. 5796, pp. 540–552. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Netflix Prize: Forum/Dataset README file (Editor 2006),
  20. 20.
    Netflix, netflix dataset N. Prize, Editor 2011, lifecrunch.bizGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Duc Anh Nguyen
    • 1
  • Trong Hai Duong
    • 1
  1. 1.School of Computer Science and EngineeringInternational University, Vietnam National University HCMCHo Chi MinhVietnam

Personalised recommendations