Explicit Construction of Ramanujan Bigraphs

  • Cristina Ballantine
  • Brooke Feigon
  • Radhika Ganapathy
  • Janne Kool
  • Kathrin Maurischat
  • Amy Wooding
Part of the Association for Women in Mathematics Series book series (AWMS, volume 2)

Abstract

We construct explicitly an infinite family of Ramanujan graphs which are bipartite and biregular. Our construction starts with the Bruhat–Tits building of an inner form of \(\mathrm{SU}_{3}(\mathbb{Q}_{p})\). To make the graphs finite, we take successive quotients by infinitely many discrete co-compact subgroups of decreasing size.

MSC 2010:

11E39 11E57 16W10 

References

  1. Alon, N.: Eigenvalues and expanders. Combinatorica 6(2), 83–96 (1986). Theory of computing, Singer Island (1984). MR 875835 (88e:05077)Google Scholar
  2. Ballantine, C., Ciubotaru, D.: Ramanujan bigraphs associated with SU(3) over a p-adic field. Proc. Am. Math. Soc. 139(6), 1939–1953 (2011). MR 2775370 (2012b:22020)Google Scholar
  3. Borel, A.: Some finiteness properties of adele groups over number fields. Inst. Hautes Études Sci. Publ. Math. 16, 5–30 (1963). MR 0202718 (34 #2578)Google Scholar
  4. Clozel, L., Harris, M., Taylor, R.: Automorphy for some l-adic lifts of automorphic mod l Galois representations. Publ. Math. Inst. Hautes Études Sci. 108, 1–181 (2008). With Appendix A, summarizing unpublished work of Russ Mann, and Appendix B by Marie-France Vignéras. MR 2470687 (2010j:11082)Google Scholar
  5. Davidoff, G., Sarnak, P., Valette, A.: Elementary Number Theory, Group Theory, and Ramanujan Graphs. London Mathematical Society Student Texts, vol. 55. Cambridge University Press, Cambridge (2003). MR 1989434 (2004f:11001)Google Scholar
  6. Feng, K., Winnie Li, W.-C.: Spectra of hypergraphs and applications. J. Number Theory 60(1), 1–22 (1996). MR 1405722 (97f:05128)Google Scholar
  7. Garrett, P.: Buildings and Classical Groups. Chapman & Hall, London (1997). MR 1449872 (98k:20081)Google Scholar
  8. Hashimoto, K.-i.: Zeta functions of finite graphs and representations of p-adic groups. In: Automorphic Forms and Geometry of Arithmetic varieties. Advanced Studies in Pure Mathematics, vol. 15, pp. 211–280. Academic, Boston (1989). MR 1040609 (91i:11057)Google Scholar
  9. Hashimoto, K.-i., Hori, A.: Selberg-Ihara’s zeta function for p-adic discrete groups. In: Automorphic Forms and Geometry of Arithmetic Varieties. Advanced Studies in Pure Mathematics, vol. 15, pp. 171–210. Academic, Boston (1989). MR 1040608 (91g:11053)Google Scholar
  10. Harris, M., Labesse, J.-P.: Conditional base change for unitary groups. Asian J. Math. 8(4), 653–684 (2004)MathSciNetCrossRefMATHGoogle Scholar
  11. Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applications. Bull. Am. Math. Soc. (N.S.) 43(4), 439–561 (electronic) (2006). MR 2247919 (2007h:68055)Google Scholar
  12. Knus, M.-A., Merkurjev, A., Rost, M., Tignol, J.-P.: The Book of Involutions. American Mathematical Society Colloquium Publications, vol. 44. American Mathematical Society, Providence (1998). With a preface in French by J. Tits. MR 1632779 (2000a:16031)Google Scholar
  13. Lubotzky, A.: Expander graphs in pure and applied mathematics. Bull. Am. Math. Soc. (N.S.) 49(1), 113–162 (2012). MR 2869010 (2012m:05003)Google Scholar
  14. Lubotzky, A., Phillips, R.L., Sarnak, P.: Explicit expanders and the ramanujan conjectures. In: STOC ‘86 Proceedings of the eighteenth annual ACM symposium on Theory of computing, pp. 240–246 (1986)Google Scholar
  15. Lubotzky, A., Phillips, R.L., Sarnak, P.: Ramanujan graphs. Combinatorica 8(3), 261–277 (1988). MR 963118 (89m:05099)Google Scholar
  16. Marcus, A., Spielman, D.A., Srivastava, N.: Interlacing families I: Bipartite Ramanujan graphs of all degrees. Ann. Math. 182(1), 307–325 (2015)Google Scholar
  17. Margulis, G.A.: Explicit group-theoretic constructions of combinatorial schemes and their applications in the construction of expanders and concentrators. Problemy Peredachi Informatsii 24(1), 51–60 (1988). MR 939574 (89f:68054)Google Scholar
  18. Pierce, R.S.: Associative Algebras. Graduate Texts in Mathematics, vol. 88. Springer, New York, 1982. Studies in the History of Modern Science, 9. MR 674652 (84c:16001)Google Scholar
  19. Platonov, V., Rapinchuk, A.: Algebraic Groups and Number Theory. Pure and Applied Mathematics, vol. 139. Academic, Boston (1994). Translated from the 1991 Russian original by Rachel Rowen. MR 1278263 (95b:11039)Google Scholar
  20. Rogawski, J.D.: Automorphic representations of unitary groups in three variables. Annals of Mathematics Studies, vol. 123. Princeton University Press, Princeton (1990). MR 1081540 (91k:22037)Google Scholar
  21. Solé, P.: Ramanujan hypergraphs and Ramanujan geometries. In: Emerging applications of number theory (Minneapolis, MN, 1996), The IMA Volumes in Mathematics and its Applications, vol. 109, pp. 583–590. Springer, New York (1999). MR 1691550 (2000c:05108)Google Scholar
  22. Tits, J.: Reductive groups over local fields. In: Automorphic Forms, Representations and L-Functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math., XXXIII, pp. 29–69. American Mathematical Society, Providence (1979) MR 546588 (80h:20064)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Cristina Ballantine
    • 1
  • Brooke Feigon
    • 2
  • Radhika Ganapathy
    • 3
  • Janne Kool
    • 4
  • Kathrin Maurischat
    • 5
  • Amy Wooding
    • 6
  1. 1.Department of Mathematics and Computer ScienceCollege of the Holy CrossWorcesterUSA
  2. 2.Department of MathematicsThe City College of New YorkNew YorkUSA
  3. 3.Department of MathematicsThe University of British ColumbiaVancouverCanada
  4. 4.Max Planck Institute for MathematicsBonnGermany
  5. 5.Mathematisches InstitutUniversität HeidelbergHeidelbergGermany
  6. 6.The Department of Mathematics and StatisticsMcGill UniversityMontrealCanada

Personalised recommendations