Copulatory and Post-copulatory Sexual Selection in Haplogyne Spiders, with Emphasis on Pholcidae and Oonopidae

  • Lucía Calbacho-RosaEmail author
  • Alfredo V. Peretti


Cryptic female choice (CFC) in spiders may involve several mechanisms to bias paternity including early termination of copulation, remating likelihood, and sperm dumping . In Pholcidae , these mechanisms seem to be very common and will be examined in the present chapter. In the Pholcidae Physocyclus globosus , sperm dumping involves an active role of the female. In contrast, in the Pholcidae Holocnemus pluchei , sperm mass ejection during copulation is mainly under male control. In another haplogyne spider, the Oonopidae Opopaea fosuma , females are able to influence male’s chances of rearing their offspring by also exerting CFC by sperm dumping. Among pholcids, rhythmic genitalic movements of the pedipalps (squeezes ) during copulation have been interpreted as genitalic copulatory courtship . Additionally, recent studies have evaluated the possibility that the outcome of male–female copulatory communication affects paternity. Future attention to the behavior of both female and male, and to the possible dialogues during copulation, promises to be a valuable tool in understanding sexual interactions in these spiders.


Sperm Competition Male Genitalia Cryptic Female Choice Sperm Storage Organ Stridulatory Organ 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Bernhard Huber and Mathias Burger for photographs, Anita Aisenberg, Ignacio Escalante, and Fernando G. Costa for useful suggestions on the manuscript, and the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), FONCYT, and SECYT-UNC for financial support.


  1. Alberti G, Michalik P (2004) Feinstrukturelle Aspekte der Fortpflanzungssysteme von Spinnentieren (Arachnida). In: Thaler K (ed) Diversit¨at und Biologie von Webspinnen, Skorpionen und anderen Spinnentieren, vol 12. Denisia, pp 1–62Google Scholar
  2. Alcock J (1994) Post-insemination associations between male and female insects: the mate guarding hypothesis. Annu Rev Entomol 39:1–21Google Scholar
  3. Alexander RD, Marshall D, Cooley J (1997) Evolutionary perspectives on insect mating. In: Choe JC, Crespi BJ (eds) The evolution of mating systems in insects and arachnids. Cambridge University Press, Cambridge, pp 4–31Google Scholar
  4. Andersson M (1994) Sexual selection. Princeton University Press, Princeton, NJGoogle Scholar
  5. Andersson M, Simmons L (2006) Sexual selection and mate choice. Trends Ecol Evol 21(6):296–302PubMedGoogle Scholar
  6. Andrés J, Cordero Rivera A (2000) Copulation duration and fertilization success in a damselfly: an example of cryptic female choice? Anim Behav 59:695–703PubMedGoogle Scholar
  7. Arnqvist G (2014) Cryptic female choice. In: Shuker DM, Simmons LW (eds) The evolution of insect mating systems. Oxford University Press, OxfordGoogle Scholar
  8. Arnqvist G, Rowe L (1995) Sexual conflict and arms races between the sexes: a morphological adaptation for control of mating in a female insect. Proc R Soc Lond Ser B 261:123–127Google Scholar
  9. Arnqvist G, Rowe L (2002) Antagonistic coevolution between the sexes in a group of insects. Nature 415:787–789PubMedGoogle Scholar
  10. Arnqvist G, Rowe L (2005) Sexual conflict. Princeton University Press, PrincetonGoogle Scholar
  11. Arnqvist G, Jones T, Elgar M (2003) Reversal of sex roles in nuptial feeding. Nature 424:387PubMedGoogle Scholar
  12. Austad S (1984) Evolution of sperm priority patterns in spiders. In: Smith RL (ed) Sperm competition and the evolution of animal mating systems. Academic Press, San Diego, pp 223–249Google Scholar
  13. Baena ML, Eberhard WG (2007) Appearances deceive: female “resistance” in a sepsid fly is not a test of male ability to hold on. Ethol Ecol Evol 19:27–50Google Scholar
  14. Barbosa F (2009) Cryptic female choice by female control of oviposition timing in a soldier fly. Behav Ecol 20:957–960Google Scholar
  15. Barker DM (1994) Copulatory plugs and paternity assurance in the nematode Caenorhabditis elegans. Anim Behav 48:147–156Google Scholar
  16. Barrantes G, Ramírez MJ (2013) Courtship, egg sac construction, and maternal care in Kukulcania hibernalis, with information on the courtship of Misionella mendensis (Araneae, Filistatidae). Arachnology 16(2):72–80Google Scholar
  17. Birkhead TR, Møller AP (1992) Sperm competition in birds: evolutionary causes and consequences. Academic Press, LondonGoogle Scholar
  18. Birkhead TR, Møller AP (1998) Sperm competition and sexual selection. Academic Press, LondonGoogle Scholar
  19. Blanckenhorn WU, Muhlhauser C, Morf C, Reusch T, Reuter M (2000) Female choice, female reluctance to mate and sexual selection on body size in the dung fly Sepsis cynipsea. Ethology 95:466–482Google Scholar
  20. Brignoli PM (1978) Some remarks on the relationships between the Haplogynae, the Semientelegynae and the Cribellatae (Araneae). Symp Zool Soc Lond 42:285–292Google Scholar
  21. Bukowski TC, Christenson TE (1997) Mating in the orbweaving spider Micrathena gracilis—II. Factors influencing copulation and sperm release and storage. Anim Behav 53:381–395Google Scholar
  22. Burger M (2007) Sperm dumping in a haplogyne spider. J Zool 273:74–81Google Scholar
  23. Burger M (2008) Functional genital morphology of armored spiders (Arachnida: Araneae: Tetrablemmidae). J Morphol 269:1073–1094PubMedGoogle Scholar
  24. Burger M (2009) Female genitalia of goblin spiders (Arachnida: Araneae: Oonopidae): a morphological study with functional implications. Invertebr Biol 128:340–358Google Scholar
  25. Burger M (2010) Complex female genitalia indicate sperm dumping in armored goblin spiders (Arachnida, Araneae, Oonopidae). Zoology 113:19–32PubMedGoogle Scholar
  26. Burger M, Kropf C (2007) Genital morphology of the haplogyne spider Harpactea lepida (Arachnida, Araneae, Dysderidae). Zoomorphology 126:45–52Google Scholar
  27. Burger M, Nentwig W, Kropf C (2002) Opopaea fosuma, n. sp. from Sumatra, Indonesia (Araneae, Oonopidae). Bull Br Arachnol Soc 12:244–248Google Scholar
  28. Burger M, Nentwig W, Kropf C (2003) Complex genital structures indicate cryptic female choice in a haplogyne spider (Arachnida, Araneae, Oonopidae, Gamasomorphinae). J Morphol 255:80–93PubMedGoogle Scholar
  29. Burger M, Jacob A, Kropf C (2006a) Copulatory behavior and web of Indicoblemma lannaianum from Thailand (Arachnida, Araneae, Tetrablemmidae). J Arachnol 34:176–185Google Scholar
  30. Burger M, Graber W, Michalik P, Kropf C (2006b) Silhouettella loricatula (Arachnida, Araneae, Oonopidae): a haplogyne spider with complex female genitalia. J Morphol 267:663–677PubMedGoogle Scholar
  31. Burger M, Michalik P, Graber W, Jacob A, Nentwig W, Kropf C (2006c) Complex genital system of a haplogyne spider (Arachnida, Araneae, Tetrablemmidae) indicates internal fertilization and full female control over transferred sperm. J Morphol 267:166–186PubMedGoogle Scholar
  32. Burger M, Izquierdo M, Carrera P (2010) Female genital morphology and mating behavior of Orchestina (Arachnida: Araneae: Oonopidae). Zoology 113:100–109PubMedGoogle Scholar
  33. Calbacho-Rosa L (2012) L. Calbacho-Rosa, PhD Dissertation Thesis: Patrones de Selección Sexual en arañas Pholcidae: comportamiento sexual y procesos asociados. Tesis doctoral. Universidad Nacional de Córdoba, ArgentinaGoogle Scholar
  34. Calbacho-Rosa L, Córdoba-Aguilar A, Peretti A (2010) Occurrence and duration of post-copulatory mate guarding in a spider with last sperm precedence. Behaviour 147:1267–1283Google Scholar
  35. Calbacho-Rosa L, Galicia-Mendoza I, Dutto MS, Córdoba-Aguilar A, Peretti AV (2013) Copulatory behavior in a pholcid spider: males use specialized genitalic movements for sperm removal and copulatory courtship. Naturwissenschaften 100:407–416PubMedGoogle Scholar
  36. Carazo P, Font E (2010) Putting information back into biological communication. J Evol Biol 23:661–669PubMedGoogle Scholar
  37. Chapman T (2006) Evolutionary conflicts of interest between males and females. Curr Biol 16:744–754Google Scholar
  38. Chapman T, Arnquist G, Bangham J, Rowe L (2003) Sexual conflict. Trends Ecol Evol 18:41–47Google Scholar
  39. Cheng LI, Howard RW, Campbell JG, Charlton RE, Nechols JR, Ramaswamy SB (2004) Mating behavior of Cephalonomia tarsalis (Ashmead) (Hymenoptera: Bethylidae) and the effect of female mating frequency on offspring production. J Insect Behav 17:227–246Google Scholar
  40. Cordero C, Eberhard WG (2003) Female choice of sexually antagonistic male adaptations: a critical review of some current research. J Evol Biol 16:1–6PubMedGoogle Scholar
  41. Cordero C, Eberhard WG (2005) Interaction between sexually antagonistic selection and mate choice in the evolution of female response to male traits. Evol Ecol 19:111–122Google Scholar
  42. Córdoba-Aguilar A (1999) Male copulatory sensory stimulation induces female ejection of rival sperm in a damselfly. Proc R Soc Lond 266:779–784Google Scholar
  43. Córdoba-Aguilar A (2006) Sperm ejection as a possible cryptic female choice mechanism in Odonata (Insecta). Physiol Entomol 31:146–153Google Scholar
  44. Córdoba-Aguilar A, Uhía E, Cordero Rivera A (2003) Sperm competition in Odonata (Insecta): the evolution of female sperm storage and rivals’ sperm displacement. J Zool Lond 261:381–398Google Scholar
  45. Cowan D (1991) The solitary and presocial Vespidae. In: Ross KG, Matthews RW (eds) The social biology of wasps. Comstock, Ithaca, pp 33–73Google Scholar
  46. Crudgington HS, Siva-Jothy MT (2000) Genital damage, kicking and early death. Nature 407:855–856PubMedGoogle Scholar
  47. Darwin C (1871) The descent of man and selection in relation to sex (reprinted). Random House, New YorkGoogle Scholar
  48. Dimitrov D, Hormiga G (2009) Revision and cladistic analysis of the orbweaving spider genus Cyrtognatha Keyserling, 1881 (Araneae, Tetragnathidae). Bull Am Mus Nat Hist 317:1–140Google Scholar
  49. Dimitrov D, Alvarez-Padilla F, Hormiga G (2007) The female genital morphology of the orb weaving spider genus Agriognatha (Araneae, Tetragnathidae). J Morphol 268:758–770PubMedGoogle Scholar
  50. Drengsgaard IL, Toft S (1999) Sperm competition in a nuptial feeding spider, Pisaura mirabilis. Behaviour 136:877–987Google Scholar
  51. Dutto MS (2006) Análisis funcional del comportamiento de estridulación en Holocnemus pluchei (Scopoldi) (Araneae: Pholcidae) femenino. Graduation thesis, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Argentina, p 56Google Scholar
  52. Dutto MS, Calbacho-Rosa L, Peretti A (2011) Signalling and sexual conflict: female spiders use stridulation to inform males of sexual receptivity. Ethology 117:1040–1049Google Scholar
  53. Eberhard W (2001) Species-specific genitalic copulatory courtship in sepsid flies (Diptera, Sepsidae, Microsepsis) and theories of genitalic evolution. Evolution 55(1):93−102Google Scholar
  54. Eberhard WG (1985) Sexual selection and animal genitalia. Harvard University Press, CambridgeGoogle Scholar
  55. Eberhard WG (1991) Copulatory courtship and cryptic female choice in insects. Biol Rev 66:1–31Google Scholar
  56. Eberhard WG (1994) Evidence for widespread courtship during copulation in 131 species of insects and spiders, and implications for cryptic female choice. Evolution 48:711–733Google Scholar
  57. Eberhard WG (1996) Female control: sexual selection by cryptic female choice. Princeton University Press, PrincetonGoogle Scholar
  58. Eberhard WG (2002) The function of female resistance behavior: intromission by male coercion vs. female cooperation in sepsid flies (Diptera: Sepsidae). Rev Biol Trop 50:485–505PubMedGoogle Scholar
  59. Eberhard WG (2004) Rapid divergent evolution of sexual morphology: comparative tests of antagonistic coevolution and traditional female choice. Evolution 58:1947–1970PubMedGoogle Scholar
  60. Eberhard WG (2005) Sexually reversed copulatory courtship roles and possible nuptial feeding in the soldier beetle Ditemnus acantholabus (Coleoptera, Cantharidae). J Kans Entomol Soc 79:13–22Google Scholar
  61. Eberhard WG (2006) Sexually antagonistic coevolution in insects is associated with only limited morphological diversity. J Evol Biol 19:657–681PubMedGoogle Scholar
  62. Eberhard WG (2009) Post-copulatory sexual selection: Darwin’s omission and its consequences. Proc Natl Acad Sci USA 106:10025–10032PubMedCentralPubMedGoogle Scholar
  63. Eberhard WG (2011) Experiments with genitalia: a commentary. Trends Ecol Evol 26:17–21PubMedGoogle Scholar
  64. Eberhard WG, Cordero C (1995) Sexual selection by cryptic female choice on male seminal products—a new bridge between sexual selection and reproductive physiology. Trends Ecol Evol 10:493–496PubMedGoogle Scholar
  65. Eberhard WG, Huber BA (2010) Spider genitalia: precise maneuvers with a numb structure in a complex lock.In: Leonard JL, Cordoba-Aguilar A (eds) The evolution of primary sexual characters in animals. Oxford University Press, Oxford, pp 249–284Google Scholar
  66. Eberhard WG, Guzmán-Gómez S, Catley KM (1993) Correlation between spermathecal morphology and mating systems in spiders. Biol J Linn Soc 50:197–209Google Scholar
  67. Eberhard WG, Bernhard B, Huber BA, Rodríguez R, Briceno D, Salas I, Rodríguez V (1998) One size fits all? Relationships between the size and degree of variation in genitalia and other body parts in twenty species of insects and spiders. Evolution 52:415–431Google Scholar
  68. Eberhard W, Rodríguez RL, Polihronakis M (2009) Pitfalls in understanding the functional significance of genital allometry. J Evol Biol 22:435–445PubMedGoogle Scholar
  69. Edvardsson M, Arnqvist G (2000) Copulatory courtship and cryptic female choice in red flour beetles Tribolium castaneum. Proc R Soc Lond B 267:559–563Google Scholar
  70. Elgar MA (1995) Copulation duration in spiders: comparative patterns. Rec. WA Mus 51:1–11Google Scholar
  71. Elgar MA (1998) Sperm competition and sexual selection in spiders and other arachnids. In: Birkhead TR, Møller AP (eds) Sperm competition and sexual selection. Academic Press, London, pp 307–337Google Scholar
  72. Gerhardt U (1921) Vergleichende Studien über die Morphologie des männlichen Tasters und die Biologie der Kopulation der Spinnen. Arch. Naturgesc 87(A, 4):78–247Google Scholar
  73. Gerhardt U (1923) Weitere sexualbiologische Untersuchungen an Spinnen. Arch. Naturgesellschaft 90:85–192Google Scholar
  74. Gerhardt U (1924) Weitere Studien über die Biologie der Spinnen. Archiv für. Naturgeschichte 90:85–192Google Scholar
  75. Gerhardt U (1927) Neue biologische Untersuchungen an einheimischen und ausländischen Spinnen. Z Morphol Oekol Tiere 8:96–186Google Scholar
  76. González M, Costa F (2008) Persistence of sexual reluctance in mated females and the importance of regular copulation in a wolf spider. Ethol Ecol Evol 20:115–124Google Scholar
  77. Gónzalez-Soriano E, Córdoba-Aguilar A (2003) Sexual behaviour in Paraphlebia quinta Calvert: male dimorphism and a possible example of female control (Zygoptera: Megapodagrionidae). Odonatologica 32:345–353Google Scholar
  78. Griswold CE, Coddington JA, Hormiga G, Scharff N (1998) Phylogeny of the orb web building spiders (Araneomorphae, Orbiculariae: Deinopoidea, Araneoidea). Zool J Linn Soc 123:1–99Google Scholar
  79. Hass B (1990) A quantitative study of insemination and gamete efficiency in different species of the Rhabditis strongyloides group (Nematoda). Invertebr Reprod Dev 18:205–208Google Scholar
  80. Hellriegel B, Ward PI (1998) Complex female reproductive tract morphology: its possible use in postcopulatory female choice. J Theor Biol 190:179–186Google Scholar
  81. Hoikkala A, Crossley S (2000) Copulatory courtship in Drosophila: behavior and songs of D. birchii and D. serrata. J Insect Behav 13:71–86Google Scholar
  82. Holland B, Rice WR (1999) Experimental removal of sexual selection reverses intersexual antagonistic coevolution and removes a reproductive load. Proc Nat Acad Sci USA. 96:5083–5088PubMedCentralPubMedGoogle Scholar
  83. Hosken D, Stockley P (2003) Sexual selection and genital evolution. Trends Ecol Evol 19:87–93Google Scholar
  84. House CM, Simmons LW (2003) Genital morphology and fertilization success in the dung beetle Onthophagus taurus: an example of sexually selected male genitalia. Proc Roy Soc B 278:447–455Google Scholar
  85. Huber BA (1993a) Genital mechanics and sexual selection in the spider Nesticus cellulanus (Araneae: Nesticidae). Can J Zool 71:2437–2447Google Scholar
  86. Huber BA (1993b) Female choice and spider genitalia. Bolletino dell’ Accademia Gioenia di Scienze Naturali (Catania) 26:209–214Google Scholar
  87. Huber BA (1994) Genital morphology, copulatory mechanism and reproductive biology in Psilochorus simoni (Berland, 1911) (Pholcidae; Araneae). Neth J Zool 44:85–99Google Scholar
  88. Huber BA (1995) Copulatory mechanism in Holocnemus pluchei and Pholcus opilionoides, with notes on male cheliceral apophyses and stridulatory organs in Pholcidae (Araneae). Acta Zool. Stockholm 76:291–300Google Scholar
  89. Huber BA (1996) Genitalia, fluctuating asymmetry, and patterns of sexual selection in Physocyclus globosus (Araneae, Pholcidae). Rev Suisse Zool (Suppl.):289–284Google Scholar
  90. Huber BA (1997) Evidence for gustatorial courtship in a haplogyne spider (Hedypsilus culicinus: Pholcidae: Araneae). Neth J Zool 47(1):95–98Google Scholar
  91. Huber BA (1998a) Spider reproductive behaviour: a review of Gerhardt’s work from 1911-1933, with implications for sexual selection. Bull Br arachnol Soc 11(3):81–91Google Scholar
  92. Huber BA (1998b) Genital mechanics in some Neotropical pholcid spiders (Araneae: Pholcidae), with implications for systematics. J Zool London 244:587–599Google Scholar
  93. Huber BA (1999) Sexual selection in pholcid spiders (Araneae, Pholcidae): artful chelicerae and forceful genitalia. J Arachnol 27:135–141Google Scholar
  94. Huber BA (2000) New World pholcid spiders (Araneae: Pholcidae): a revision at generic level. Bull Am Mus Nat Hist 254:1–348Google Scholar
  95. Huber BA (2002a) Functional morphology of the genitalia in the spider Spermophora senoculata (Pholcidae, Araneae). Zool Anz 241:105–116Google Scholar
  96. Huber BA (2002b) Functional Morphology of the Genitalia in the Spider Spermophora senoculata (Pholcidae, Araneae). Zool Anz 241:105–166Google Scholar
  97. Huber BA (2003a) Rapid evolution and species-specificity of arthropod genitalia: fact or artifact? Org Divers Evol 3:63–71Google Scholar
  98. Huber BA (2003b) Southern African pholcid spiders: revision and cladistic analysis of Quamtana gen. Nov. and Spermophora Hentz (Araneae: Pholcidae), with notes on male-female covariation. Zool J Linn Soc 139:477–527Google Scholar
  99. Huber BA (2004) Evidence for functional segregation in the directionally asymmetric male genitalia of the spider Metagonia mariguitarensis (González-Sponga) (Pholcidae: Araneae). J Zool Lond 262:317–326Google Scholar
  100. Huber BA (2005) Sexual selection research on spiders: progress and biases. Biol Rev 80:363–385PubMedGoogle Scholar
  101. Huber BA (2006) Cryptic female exaggeration: the asymmetric female internal genitalia of Kaliana yuruani (Araneae: Pholcidae). J Morphol 267:705–712PubMedGoogle Scholar
  102. Huber BA, Eberhard WG (1997) Courtship, copulation, and genital mechanics in Physocyclus globosus (Araneae, Pholcidae). Can J Zool 75:905–918Google Scholar
  103. Huber BA, Brescovit AD, Rheims CA (2005) Exaggerated female genitalia in two new spider species (Araneae: Pholcidae), with comments on genital evolution by female choice versus antagonistic coevolution. Insect Syst Evol 36:285–292Google Scholar
  104. Humphries DA (1967) The mating of the hen flea Certophyllus gallinae (Schrank) (Siphonaptera: Insecta). Anim Behav 15:82–90PubMedGoogle Scholar
  105. Kamimura Y (2000) Possible removal of rival sperm by the elongated genitalia of the earwig, Euborellia plebeja. Zool Sci 17:667–672PubMedGoogle Scholar
  106. Kamimura Y (2005) Last-male paternity of Euborellia plebeja, an earwig with elongated genitalia and sperm removal behavior. J Ethol 23:35–41Google Scholar
  107. Kaster JL, Jakob EM (1997) Last-male sperm priority in a haplogyne spider (Araneae: Pholcidae): correlations between female morphology and patterns of sperm usage. Ann Entomol Soc Am 90:254–259Google Scholar
  108. Kelly CD, Jennions MD (2011) Sexual selection and sperm quantity: meta-analyses of strategic ejaculation. Biol Rev 86:863–884PubMedGoogle Scholar
  109. King BH, Fischer CR (2005) Males mate guard in absentia through extended effects of postcopulatory courtship in a parasitoid wasp Spalangia endius (Hymenoptera: Pteromalidae). J Insect Physiol 51:1340–1345PubMedGoogle Scholar
  110. Knoflach B, van Harten A (2000) Palpal loss, single palp copulation and obligatory mate consumption in Tidarren cuneolatum(Tullgren, 1910) (Araneae, Theridiidae). J Nat Hist 34:1639–1659Google Scholar
  111. Kotrba M (1996) Sperm transfer by spermatophore in Diptera: new results from the Diopsidae. Zool J Linn Soc 117:305–323Google Scholar
  112. Kraus O (1984) Male spider genitalia: evolutionary changes in structure and function. Verh Naturwiss Ver Hamburg 27:373–382Google Scholar
  113. Legendre R (1963) L’audition et l’e’mision de sons chez les Araneides. Ann Biol 2:371–390Google Scholar
  114. Leonard J, Córdoba-Aguilar A (2010) The evolution of primary characters in animals. Oxford University Press, OxfordGoogle Scholar
  115. Levi HW (1967) Predatory and sexual behavior of the spider Sicarius (Araneae: Sicariidae). Museum of Comparative Zoology, Harvard University, CanbridgeGoogle Scholar
  116. Manrique G, Lazzari CR (1994) Sexual behaviour and stridulation during mating in Triatoma infestans (Hemiptera: Reduviidae). Mem Inst Oswaldo Cruz 89:629–633PubMedGoogle Scholar
  117. Marcotte M, Delisle J, McNeil JN (2005) Impact of male mating history on the temporal sperm dynamics of Choristoneura rosaceana and C. fumiferana females. J Insect Physiol 51:537–544PubMedGoogle Scholar
  118. Martin OY, Hosken DJ (2004) Copulation reduces male but not female longevity in Saltella sphondylli (Diptera: Sepsidae). J Evol Biol 17:357–362PubMedGoogle Scholar
  119. Masumoto T (1993) The effect of the copulatory plug in the funnel-web spider, Agelena limbata (Araneae: Agelenidae). J Arachnol 21:55–59Google Scholar
  120. Michalik P, Reiher W, Tintelnot-Suhm M, Coyle FA, Alberti G (2005) Female genital system of the folding trapdoor spider Antrodiaetus unicolor (Hentz, 1842) (Antrodiaetidae, Araneae): ultrastructural study of form and function with notes on reproductive biology of spiders. J Morphol 263:284–309PubMedGoogle Scholar
  121. Michiels NK (1989) Morphology of male and female genitalia in Sympetrum danae (Sulzer), with special reference to the mechanism of sperm removal during copulation (Anisoptera: Libellulidae). Odonatologica 18:21–31Google Scholar
  122. Montgomery TH (1903) Studies on the habits of spiders, particularly those of the mating period. Proc Acad Nat Sci Phila 55:59–151Google Scholar
  123. Naud MJ, Hanlon RT, Hall KC, Shaw PW, Havenhand JN (2004) Behavioural and genetic assessment of reproductive success in a spawning aggregation of the Australian giant cuttlefish, Sepia apama. Anim Behav 67:1043–1050Google Scholar
  124. O’Neill K (2001) Solitary wasps behavior and natural history. Comstock, IthacaGoogle Scholar
  125. Ono T, Siva-Jothy MT, Kato A (1989) Removal and subsequent ingestion of rivals’ semen during copulation in a tree cricket. Physiol Entomol 14:195–202Google Scholar
  126. Otronen M (1990) Mating behavior and sperm competition in the fly, Dryomyza anilis. Behav Ecol Socbiol 26:349–356Google Scholar
  127. Otronen M (1997) Variation in sperm precedence during mating in male flies, Dryomyza anilis. Anim Behav 53:1233–1240PubMedGoogle Scholar
  128. Otronen M, Siva-Jothy MT (1991) The effect of postcopulatory male behaviour on ejaculate distribution with in the female sperm storage organs of the fly, Dryomyza anilis (Diptera: Dryomyzidae). Behav Ecol Sociobiol 29:33–37Google Scholar
  129. Parker GA (1970) Sperm competition and its evolutionary consequences in the insects. Biol Rev 45:525–567Google Scholar
  130. Parker GA (1984) Sperm competition and the evolution of animal mating strategies. In: Smith RL (ed) Sperm competition and the evolution of animal mating systems. Academic Press, London, pp 1–59Google Scholar
  131. Parker GA (2006) Sexual conflict over mating and fertilization: an overview. Philos Trans R Soc Lond B Biol Sci 361:235–259PubMedCentralPubMedGoogle Scholar
  132. Peretti AV, Aisenberg A (2011) Communication under sexual selection hypotheses: challenging prospects for future studies under extreme sexual conflict. Acta ethol. doi: 10.1007/s10211-011-0099-4 Google Scholar
  133. Peretti AV, Córdoba-Aguilar A (2007) Sexual conflict over mating: on the value of fine-scaled behavioral observations for studies on sexual coercion. Ethol Ecol Evol 19:77–86Google Scholar
  134. Peretti AV, Eberhard WG (2010) Cryptic female choice via sperm dumping favours male copulatory courtship in a spider. J Evol Biol 23:271–281PubMedGoogle Scholar
  135. Peretti AV, Willemart RH (2007) Sexual coercion does not exclude luring behavior in the climbing camel-spider Oltacola chacoensis (Arachnida, Solifugae, Ammotrechidae). J Ethol 25:29–39Google Scholar
  136. Peretti AV, Eberhard WG, Briceño D (2006) Copulatory dialogue: female spiders sing during copulation to influence male genitalic movements. Anim Behav 72:413–421Google Scholar
  137. Pilastro A, Scaggiante M, Rasotto MB (2002) Individual adjustment of sperm expenditure accords with sperm competition theory. Proc Natl Acad Sci USA 99:9913–9915PubMedCentralPubMedGoogle Scholar
  138. Pizzari T, Birkhead TR (2000) Female feral fowl eject sperm of subdominant males. Nature 405:787–789PubMedGoogle Scholar
  139. Platnick NI, Forster RR (1989) A revision of the South American and Australasian spiders of the family Anapidae (Araneae, Araneoidea). Bull Am Mus Nat Hist 190:1–139Google Scholar
  140. Rehfeld VK, Sudhaus W (1985) Comparative studies of sexual behavior of two sibling species of Rhabditis (Nematoda). Zool Jb Syst 112:435–454Google Scholar
  141. Rendall D, Owren MJ, Ryan MJ (2009) What do animal signals mean? Anim Behav 78:233–240Google Scholar
  142. Rezác M (2008) Description of Harpactea sadistica n. sp. (Araneae: Dysderidae) a haplogyne spider with reduced female genitalia. Zootaxa 1698:65–68Google Scholar
  143. Rezác M (2014) The spider Harpactea sadistica: co-evolution of traumatic insemination and complex female genital morphology in spiders. Proc R Soc B 276:2697–2701Google Scholar
  144. Ridley M (1989) The incidence of sperm displacement in insects: four conjectures, one corroboration. Biol J Linn Soc 30:349–367Google Scholar
  145. Ridsdill Smith TJ (1970) The behaviour of Hemithynnus hyalinatus (Hymenoptera: Tiphiidae), with notes on some other Thynnine. J Aust Entomol Soc 9:196–208Google Scholar
  146. Rodriguez V (1995) Relation of flagellum length to reproductive success in male Chelymorpha alternans Boheman (Coleoptera: Chrysomelidae: Cassidinae). Coleopt Bull 49(3):201–205Google Scholar
  147. Rodríguez RL (1998) Possible female choice during copulation in Ozophora baranowskii (Heteroptera: Lygaeidae): female behavior, multiple copulations, and sperm transfer. J Insect Behav 11:725–741Google Scholar
  148. Rodríguez V, Windsor DM, Eberhard WG (2004) Tortoise beetle genitalia and demonstration of a sexually selected advantage for flagellum length in Chelymorpha alternans (Chrysomelidae, Cassidini, Stolaini). In: Jolivet P, Santiago-Blay JA, Schmitt M (eds) New developments in the biology of chrysomelidae. SPB Academic Publishing, The Hague, pp 739–748Google Scholar
  149. Rodríguez-Márquez I, Peretti AV (2010) Intersexual cooperation during male clasping of external female genitalia in the spider Physocyclus dugesi (Araneae, Pholcidae). J Ethol 28:153–163Google Scholar
  150. Rowe L (1992) Convenience polyandry in a water strider: foraging conflicts and female control of copulation frequency and guarding duration. Anim Behav 44:189–202Google Scholar
  151. Schäfer MA, Uhl G (2002) Determinants of paternity success in the spider Pholcus phalangioides (Pholcidae: Araneae): the role of male and female mating behaviour. Behav Ecol Sociobiol 51:368–377Google Scholar
  152. Schäfer MA, Misof B, Uhl G (2008) Effects of body size of both sexes and female mating history on male behaviour and paternity success in a spider. Anim Behav 76:75–86Google Scholar
  153. Schneider JM, Lubin Y (1998) Intersexual conflict in spiders. Oikos 83:496–506Google Scholar
  154. Schneider JM, Thomas ML, Elgar MA (2001) Ectomised conductors in the golden orb-web spider, Nephila plumipes (Araneoidea): a male adaptation to sexual conflict? Behav Ecol Sociobiol 49:410–415Google Scholar
  155. Searcy WA, Nowicki S (2005) The evolution of animal communication: reliability and deception in signaling systems. Princeton University Press, PrincetonGoogle Scholar
  156. Seyfarth RM, Cheney DL, Bergman T, Fischer J, Zuberbühler K, Hammerschmidt K (2010) The central importance of information in studies of animal communication. Anim Behav 80:3–8Google Scholar
  157. Shillington C, Verrell P (1997) Sexual strategies of a North American ‘tarantula’ (Araneae: Theraphosidae). Ethology 103:588–598Google Scholar
  158. Simon E (1893) Histoire Naturelledes Araigne’ es, vol.1, part 2. Roret, Paris, pp 257–488Google Scholar
  159. Smith RL (1984) Sperm competition and the evolution of animal mating systems. Academic Press, New YorkGoogle Scholar
  160. Snook RR, Hosken DJ (2004) Sperm death and dumping in Drosophila. Nature 428:939–941PubMedGoogle Scholar
  161. Snow LSE, Andrade MCB (2005) Multiple sperm storage organs facilitate female control of paternity. Proc R Soc Lond B 272:1139–1144Google Scholar
  162. Solensky MJ, Oberhauser KS (2009) Male monarch butterflies, Danaus plexippus, adjust ejaculates in response to intensity of sperm competition. Anim Behav 77:465–472Google Scholar
  163. Stefania V, Garciaa K, Vecchiaa C, Silva LA, Guimarãesa B, Tizo-Pedrosoc E, Machado de EO, Brescovit AD, Del-Clarof K (2012) Mating behaviour, nympho-imaginal development and description of a new Mesabolivar species (Araneae: Pholcidae) from the Brazilian dry forest. J Nat Hist 1–13Google Scholar
  164. Tallamy DW, Darlington MB, Pesk JP, Powell BE (2003) Copulatory courtship signals male genetic quality in cucumber beetles. Proc R Soc Lond Ser B 270:77–82Google Scholar
  165. Thornhill R (1983) Cryptic female choice and its implications in the scorpionfly Hylobittacus nigriceps. Am Nat 122:765–788Google Scholar
  166. Thornhill R, Alcock J (1983) The evolution of insect mating systems. Harvard University Press, CambridgeGoogle Scholar
  167. Uetz GW, Stratton GE (1982) Acoustic communication and reproductive isolation in spiders. In: Witt PN, Rovner JS (eds) Spider communication: mechanisms and ecological significance. Princeton University Press, Princeton, pp 123–158Google Scholar
  168. Uhl G (1993) Mating behaviour and female sperm storage in Pholcus phalangioides (Fuesslin) (Araneae). Mem Queens Mus 33:667–674Google Scholar
  169. Uhl G (1994) Genital morphology and sperm storage in Pholcus phalangioides (Fuesslin, 1775) (Pholcidae; Araneae). Acta Zool Stockholm 75:1–12Google Scholar
  170. Uhl G (2000) Two distinctly different sperm storage organs in female Dysdera erythrina (Araneae: Dysderidae). Arthropod Struct Dev 29:163–169PubMedGoogle Scholar
  171. Uhl G (2002) Female genital morphology and sperm priority patterns in spiders (Araneae). In: Toft S, Scharff N (eds) European arachnology 2000. Aarhus University Press, Aarhus, pp 145–156Google Scholar
  172. Uhl G, Schimtt M (1996) Stridulation in Palpimanus gibbulus Dufour (Araneae: Palpimanidae). Rev Suisse Zool (Suppl):649–660Google Scholar
  173. Uhl G, Schmitt S, Schäfer M (2005) Fitness benefits of multiple mating versus female mate choice in the cellar spider (Pholcus phalangioides). Behav Ecol Sociobiol 59:69–76Google Scholar
  174. Uhl G, Vollrath F (1998) Genital morphology of Nephila edulis: implications for sperm competition in spiders. Can J Zool 76:39–47Google Scholar
  175. Uhl G, Huber BA, Rose W (1995) Male pedipalp morphology and copulatory mechanism in Pholcus phalangioides (Fuesslin, 1775) (Araneae, Pholcidae). Bull Br Arachnol Soc 10:1–9Google Scholar
  176. van Helsdingen PJ (1969) A reclassification of the species of Linyphia Latreille based on the functioning of the genitalia (Araneida, Linyphiidae). Part I. Linyphia Latreille and Neriene Blackwell. Zool Verh 105:1–303Google Scholar
  177. van Helsdingen PJ (1972) The function of genitalia as a useful taxonomic character. Arachn Congr Int V Brno 1971:123–128Google Scholar
  178. Waage JK (1979) Dual function of the damselfly penis: sperm removal and transfer. Science 203:916–918PubMedGoogle Scholar
  179. Wada T, Takegaki T, Mori T, Natsukari Y (2006) Reproductive behavior of the Japanese spineless cuttlefish Sepiella japonica. Venus 65:221–228Google Scholar
  180. Wada T, Takegaki T, Mori T, Natsukari Y (2010) Sperm removal, ejaculation and their behavioral interaction in male cuttlefish in response to female mating history. Anim Behav 79:613–619Google Scholar
  181. Walker WF (1980) Sperm utilization strategies in nonsocial insects. Am Nat 115:78–799Google Scholar
  182. Watson PJ (1990) Female-enhanced male competition determines the first mate and principal sire in the spider Linyphia litigiosa. Behav Ecol Sociobiol 26:77–90Google Scholar
  183. Watson PJ (1991) Multiple paternity as genetic bet-hedging in female sierra dome spiders, Linyphia litigiosa (Linyphiidae). Anim Behav 41:343–360Google Scholar
  184. West HP, Toft S (1999) Last-male sperm priority and the mating system of the haplogyne spider Tetragnatha extensa (Araneae: Tetragnathidae). J Insect Behav 12:433–450Google Scholar
  185. Wiehle H (1967) Metaeine semi entelegyne Gattung der Araneae. Senckenbergiana Biol 48:183–196Google Scholar
  186. Zuk M, Simmons LW (1997) Reproductive strategies of the crickets (Orthoptera: Gryllidae). In: Choe JC, Crespi BJ (eds) The evolution of mating strategies in insects and arachnids. Cambridge University Press, Cambridge, pp 89–109Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Instituto de Diversidad y Ecología AnimalCONICET - Universidad Nacional de CórdobaCórdobaArgentina

Personalised recommendations