A Survey of Grey Systems Applied to Multi-objective Problem

  • Fausto Balderas
  • Eduardo Fernandez
  • Claudia Gómez
  • Laura Cruz-ReyesEmail author
Part of the Studies in Computational Intelligence book series (SCI, volume 601)


Decision-making processes involve a series of steps: identifying the problems, constructing the preferences, evaluating the alternatives, and determining the best alternatives (Simon, The new science of management decision. In: Proceedings of the 33rd Conference of the Operational Research Society of New Zealand, Citeseer, 1960). Using a multi-criteria decision making approach, the grey system theory has been used to capture the complexity inherent in selection process. The grey system theory proposed by Deng (J. Grey Syst. 1(1), 1–24 1989) is based on the assumption that a system is uncertain and that the information regarding the system is insufficient to build a relational analysis or to construct a model to characterize the system. The aim of this chapter is to provide a short review of the three mostly seen research methods employed for the investigation of uncertain systems: probability and statistics, fuzzy mathematics and grey systems theory. This chapter provides a short review of the general framework, current research trends and future research topics on grey systems applied to decision problems.


  1. 1.
    Liu, S., Lin, Y., Forrest, J.Y.L.: Grey Systems: Theory and Applications, vol. 68. Springer, Berlin (2010)Google Scholar
  2. 2.
    Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-objective Problems. Genetic and Evolutionary Computation, 2nd edn. Springer, Berlin (2007)Google Scholar
  3. 3.
    Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer Series Artificial Intelligence, 3rd edn. Springer, New York (1996)Google Scholar
  4. 4.
    Moore, R.E.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)zbMATHGoogle Scholar
  5. 5.
    Wang, Q., Wu, H.: The concept of grey number and its property. In: Proceedings of NAFIPS, USA, pp. 45–49 (1998)Google Scholar
  6. 6.
    Wu, Q., Zhou, W., Li, S., Wu, X.: Application of grey numerical model to groundwater resource evaluation. Environ. Geol. 47, 991–999 (2005)CrossRefGoogle Scholar
  7. 7.
    Shi, J.R., Liu, S.Y., Xiong, W.T.: A new solution for interval number linear programming. J. Syst. Eng. Theor. Pract. 2, 101–106 (2005). (in Chinese)Google Scholar
  8. 8.
    Carazo, A.F., Gómez, T., Molina, J., Hernández-Díaz, A.G., Guerrero, F.M., Caballero, R.: Solving a comprehensive model for multiobjective project portfolio selection. Comput. Oper. Res. 37(4), 630–639 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Castro, M.: Development and implementation of a framework for I&D in public organizations. Master’s thesis, Universidad Autónoma de Nuevo León (2007)Google Scholar
  10. 10.
    García, R.: Hyper-Heuristic for solving social portfolio problem. Master’s thesis, Instituto Tecnológico de Cd. Madero (2010)Google Scholar
  11. 11.
    Fernández, E., López, E., Bernal, S., Coello Coello, C.A., and Navarro, J.: Evolutionary multiobjective optimization using an outranking—based dominance generalization. Comput. Oper. Res. 37(2), 390–395 (2010)Google Scholar
  12. 12.
    Golmohammadi, D., Mellat-Parast, M.: Developing a grey-based decision-making model for supplier selection. Int. J. Prod. Econ. 137(2), 191–200 (2012)CrossRefGoogle Scholar
  13. 13.
    Arasteh, A., Aliahmadi, A., Omran, M.M.: Application of gray systems and fuzzy sets in combination with real options theory in project portfolio management. Arab. J. Sci. Eng. 39(8), 6489–6506 (2014)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Liu, Y., Forrest, J., Xie, N.: Ranking grey numbers based on dominance grey degrees. Syst. Eng. Electron. J. 25(4), 618–626 (2014)Google Scholar
  15. 15.
    Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. Wiley, Chichester (2001)zbMATHGoogle Scholar
  16. 16.
    Deng, J.L.: The introduction of grey system. J. Grey Syst. 1 (1), 1–24 (1989)Google Scholar
  17. 17.
    Simon, S.M.D.: The new science of management decision. In: Proceedings of the 33rd Conference of the Operational Research Society of New Zealand, Citeseer, (1960)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Fausto Balderas
    • 1
  • Eduardo Fernandez
    • 2
  • Claudia Gómez
    • 1
  • Laura Cruz-Reyes
    • 1
    Email author
  1. 1.Tecnológico Nacional de MéxicoInstituto Tecnológico de Ciudad MaderoMaderoMexico
  2. 2.Universidad Autónoma de SinaloaSinaloaMexico

Personalised recommendations