An Ant Colony Algorithm for Solving the Selection Portfolio Problem, Using a Quality-Assessment Model for Portfolios of Projects Expressed by a Priority Ranking

  • S. Samantha Bastiani
  • Laura Cruz-ReyesEmail author
  • Eduardo Fernandez
  • Claudia Gómez
  • Gilberto Rivera
Part of the Studies in Computational Intelligence book series (SCI, volume 601)


One of the most important problems faced by any organization is make decisions about how to invest and manage the resources to get more benefits; however, the organizations resources are not enough to support all portfolios proposals. To these problems that face the executives of the big organizations, is known as Select Portfolio Problem. In this work is developed an ant colony algorithm, which is an especially effective meta-heuristic, this meta-heuristic is hybridized with a multi-objective local search, this strategy allows using knowledge of the ant, to build potential solutions, knowledge is obtained through the pheromone trail left by ants when find good solutions, for that the algorithm does not converge prematurely an evaporation strategy is implemented. The strategy meta-heuristic include an optimization model for portfolio selection called discrepancies model, this model is implemented when the information concerned to the quality of the projects is in form of ranking, besides help to evaluate portfolios through ten criteria to maximize the impact of the portfolio. This approach allowed reaching privileged areas of Pareto’s front, where identified solutions that reflect the preferences of the decision maker. The experimental tests show the advantages of our proposal, providing reasonable evidence of its potential for solving the select portfolio problems with many objectives.


  1. 1.
    Bertolini, M., Braglia, M., Carmignani, G.: Application of the AHP methodology in making a proposal for a public work contract. Int. J. Project Manage. 24(5), 422–430 (2006)CrossRefGoogle Scholar
  2. 2.
    Brans, J.P., Mareschal, B.: PROMETHEE methods. In: Figueira, J., Greco, S., Erghott, M. (eds.) Multiple Criteria Decision Analysis: State of the Art Surveys, pp. 163–190. Springer Science+Business Media, New York (2005)Google Scholar
  3. 3.
    Cooper, R., Edgett, S., Kleinschmidt, E.: Portfolio management for new product development: results of an industry practices study. R&D Manag. 31(4), 361–380 (2001)CrossRefGoogle Scholar
  4. 4.
    Cruz, L., Fernandez, E., Gomez, C., Rivera, G., Perez, F.: Many-objective portfolio optimization of interdependent projects with ‘a priori’ incorporation of decision-maker preferences. Appl. Math. 8(4), 1517–1531 (2014)Google Scholar
  5. 5.
    Dey, P.K.: Integrated project evaluation and selection using multiple-attribute decision-making. Int. J. Prod. Econ. 103(1), 90–103 (2006)CrossRefGoogle Scholar
  6. 6.
    Doerner, K., Gutjahr, W.J., Hartl, R.F., Strauss, C., Stummer, C.: Pareto ant colony optimization: a metaheuristic approach to multiobjective portfolio selection. Ann. Oper. Res. 131(1–4), 79–99 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evolut. Comput. 1(1), 53–66 (1997)CrossRefGoogle Scholar
  8. 8.
    Duarte, B., Reis, A.: Developing a projects evaluation system based on multiple attribute value theory. Comput. Oper. Res. 33(5), 1488–1504 (2006)zbMATHCrossRefGoogle Scholar
  9. 9.
    Fernandez, E., Felix, L.F., Mazcorro, G.: Multi-objective optimisation of an outranking model for public resources allocation on competing projects. Int. J. Oper. Res. 5(2), 190–210 (2009)zbMATHCrossRefGoogle Scholar
  10. 10.
    Fernandez, E., Olmedo, R.: Public project portfolio optimization under a participatory paradigm. Appl. Comput. Intell. Soft Comput. 2013, Article ID 891781, 13 p. doi: 10.1155/2013/891781 (2013)
  11. 11.
    Gabriel, S., Kumar, S., Ordoñez, J., Nasserian, A.: A multiobjective optimization model for project selection with probabilistic consideration. Socio-Econ. Plann. Sci. 40(4), 297–313 (2006)CrossRefGoogle Scholar
  12. 12.
    Gómez Santillán, C., Cruz Reyes, L., Meza Conde, E., Schaeffer, E., Castilla Valdez, G.: A self-adaptive ant colony system for semantic query routing problem in P2P networks. Computación y Sistemas (CyS), 13(4) (2010)Google Scholar
  13. 13.
    Greco, S., Matarazzo, B., Slowinski, R.: Rough sets theory for multicriteria decision analysis. Eur. J. Oper. Res. 129(1), 1–47 (2001)zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Halouani, N., Chabchoub, H., Martel, J.M.: PROMETHEE-MD-2T method for project selection. Eur. J. Oper. Res. 195(3), 841–849 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Kaplan, P., Ranjithan, S.R.: A new MCDM approach to solve public sector planning problems. In: Proceedings of the 2007 IEEE Symposium on Computational Intelligence in Multi Criteria Decision Making, pp. 153–159 (2007)Google Scholar
  16. 16.
    Khalili-Damghani, K., Sadi-Nezhad, S.: A hybrid fuzzy multiple criteria group decision making approach for sustainable project selection. Appl. Soft Comput. 13(1), 339–352 (2013)CrossRefGoogle Scholar
  17. 17.
    Liesio, J., Mild, P., Salo, A.: Preference programming for robust portfolio modeling and project selection. Eur. J. Oper. Res. 181(3), 1488–1505 (2007)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Mavrotas, G., Diakoulaki, D., Caloghirou, Y.: Project prioritization under policy restrictions. A combination of MCDA with 0-1 programming. Eur. J. Oper. Res. 171(1), 296–308 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Roy, B.: The outranking approach and the foundations of ELECTRE methods. In: Bana e Costa, C.A. (ed.) Reading in Multiple Criteria Decision Aid, pp. 155–183. Springer, Berlin (1990)CrossRefGoogle Scholar
  20. 20.
    Saaty, T.L.: The analytic hierarchy and analytic network processes for the measurement of intangible criteria and for decision-making. In: Figueira, J., Greco, S., Erghott, M. (eds.) Multiple Criteria Decision Analysis: State of the Art Surveys, pp. 345–407. Springer Science+Bussiness Media, New York (2005)Google Scholar
  21. 21.
    Sugrue, P., Mehrotra, A., Orehovec, P.M.: Financial aid management: an optimisation approach. Int. J. Oper. Res. 1, 267–282 (2006)zbMATHCrossRefGoogle Scholar
  22. 22.
    Yang, Y., Yang, S., Ma, Y.: A literature review on decision making approaches for research and development project portfolio selection. In: CSAMSE Conference (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • S. Samantha Bastiani
    • 1
  • Laura Cruz-Reyes
    • 1
    Email author
  • Eduardo Fernandez
    • 2
  • Claudia Gómez
    • 1
  • Gilberto Rivera
    • 1
  1. 1.Instituto Tecnológico Nacional de MéxicoMéxicoMexico
  2. 2.Universidad Autónoma de Sinaloa (UAS). Justicia Social SNCiudad UniversitariaSinaloaMexico

Personalised recommendations