Inner Product Vectors for Skew-Hadamard Matrices

  • Ilias S. Kotsireas
  • Jennifer Seberry
  • Yustina S. Suharini
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 133)


Algorithms to find new orders of skew-Hadamard matrices by complete searches are not efficient and require extensive CPU time. We consider a method relying on pre-calculation of inner product vectors aiming to reduce the search space. We apply our method to the algorithm of Seberry–Williamson to construct skew-Hadamard matrices. We find all possible solutions for ≤ 29. We use these results to improve analysis in order to reduce the search space.


Hadamard matrices Seberry-Williamson array Skew-Hadamard matrices Good matrices Supplementary difference sets 05B20 


  1. 1.
    Baumert, L.D., Hall, Jr., M.: A new construction for Hadamard matrices. Bull. Am. Math. Soc. 71, 169–170 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Baumert, L.D., Golomb, S.W., Hall, Jr., M.: Discovery of an Hadamard matrix of order 92. Bull. Am. Math. Soc. 68, 237–238 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Djokovic, D.: Skew Hadamard matrices of order 4 × 37 and 4 × 43. J. Comb. Theory Ser. A 61(2), 319–321 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Djokovic, D.: Williamson matrices of order 4n for n = 33, 35, 39. Discret. Math. 115(1–3), 267–271 (1993)Google Scholar
  5. 5.
    Djokovic, D.: Skew-Hadamard matrices of orders 188 and 388 exist. Int. Math. Forum 3(21–24), 1063–1068 (2008)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Djokovic, D.: Skew-Hadamard matrices of orders 436, 580, and 988 exist. J. Comb. Des. 16(6), 493–498 (2008)CrossRefGoogle Scholar
  7. 7.
    Djokovic, D., Golubitsky, O., Kotsireas, I.S.: Some new orders of Hadamard and skew-Hadamard matrices. J. Comb. Des. 22(6), 270–277 (2014)CrossRefzbMATHGoogle Scholar
  8. 8.
    Goethals, J.M., Seidel, J.J.: A skew-Hadamard matrix of order 36. J. Aust. Math. Soc. 11, 343–344 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hadamard, J.: Resolution d’une question relat ive aux determinants. Bull. Sci. Math. 17, 240–246 (1893)zbMATHGoogle Scholar
  10. 10.
    Holzmann, W.H., Kharaghani, H., Tayfeh-Rezaie, B.: Williamson matrices up to order 59. Des. Codes Crypt. 46(3), 343–352 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Paley, R.E.A.C.: On orthogonal matrices. J. Math. Phys. 12, 311–320 (1933)Google Scholar
  12. 12.
    Scarpis, V.: sui determinanti di valore massimo. Rend. R. Inst. Lombardo Sci. e Lett. 31(2), 1441–1446 (1898)Google Scholar
  13. 13.
    Seberry, J., Yamada, M.: Hadamard matrices, sequences, and block designs. In: Dinitz, J.H., Stinson, D.R. (eds.) Contemporary Design Theory: A Collection of Surveys, pp. 431–560. Wiley, New York (1992)Google Scholar
  14. 14.
    Sylvester, J.J.: Thoughts on inverse orthogonal matrices, simulataneous sign successions, and tesselated pavements in two or more colours, with applications to Newton’s rule, ornamental tilework, and the theory of numbers. Phil. Mag. 34(4), 461–475 (1867)Google Scholar
  15. 15.
    Wallis, J.S.: Combinatorial matrices. Ph.D. Thesis, La Trobe University (1971)Google Scholar
  16. 16.
    Wallis, J.S.: A skew-Hadamard matrix of order 92. Bull. Aust. Math. Soc. 5, 203–204 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Wallis, J.S.: Hadamard matrices. In: Wallis, W.D., Street, A.P., Wallis, J.S. (eds.) Combinatorics: Room Squares, Sum-Free Sets and Hadamard Matrices. Lecture Notes in Mathematics. Springer, Berlin (1972)Google Scholar
  18. 18.
    Wallis, J.S., Whiteman, A.L.: Some classes of Hadamard matrices with constant diagonal. Bull. Aust. Math. Soc. 7, 223–249 (1972)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Williamson, J.: Hadamard’s determinant theorem and the sum of four squares. Duke Math. J. 11, 65–81 (1944)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ilias S. Kotsireas
    • 1
  • Jennifer Seberry
    • 2
  • Yustina S. Suharini
    • 3
  1. 1.Department of Physics & Computer ScienceWilfrid Laurier UniversityWaterlooCanada
  2. 2.Centre for Computer and Information Security Research, SCSSEUniversity of WollongongWollongongAustralia
  3. 3.Department of Informatics EngineeringInstitute of Technology IndonesiaBantenIndonesia

Personalised recommendations