Advertisement

Femtosecond Mode-Locked Semiconductor Disk Lasers

  • Uwe Griebner
  • Peter Klopp
  • Martin Zorn
  • Markus Weyers
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 195)

Abstract

The generation of ultrashort pulses with passively mode-locked semiconductor disk lasers (SDLs) incorporating only an optically-pumped surface-emitting semiconductor gain element and a semiconductor saturable absorber mirror (SESAM) is presented. The optimum parameters for nearly Fourier-limited femtosecond pulses in single- or multiple-pulse regimes are investigated. On the basis of the experience gained a harmonically mode-locked SDL emitting sub-200 fs pulses at a very high repetition rate of 92 GHz and a fundamentally mode-locked SDL generating practically chirpfree pulses with durations close to 100 fs at a rate of 5 GHz are demonstrated in the 1-µm wavelength range. The latter set a record for shortest pulse durations achieved directly from any fundamentally or harmonically mode-locked semiconductor laser. Overall, the results are a further step of modelocked SDLs in becoming useful compact and low-cost ultrashort-pulse sources.

Keywords

Pump Power Saturable Absorber Photo Luminescence Group Delay Dispersion High Pulse Repetition Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    H. Yoshida, Y. Yamashita, M. Kuwabara, H. Kan, A 342-nm ultraviolet AlGaN multiple-quantum-well laser diode. Nat. Photonics 2, 551–554 (2008)CrossRefGoogle Scholar
  2. 2.
    K.J. Linden, Single mode, short cavity, Pb-salt diode lasers operating in the 5, 10, and 30 μm spectral regions. IEEE J. Quantum Electron. 21, 391–394 (1985)CrossRefADSGoogle Scholar
  3. 3.
    R. Gebs, P. Klopp, G. Klatt, T. Dekorsy, U. Griebner, A. Bartels, Time-domain THz spectroscopy based on asynchronous optical sampling with a femtosecond semiconductor disk laser. Electron. Lett. 46, 75 (2010)CrossRefGoogle Scholar
  4. 4.
    F. Quinlan, G. Ycas, S. Osterman, S.A. Diddams, A 12.5 GHz-spaced optical frequency comb spanning > 400 nm for near-infrared astronomical spectrograph calibration. Rev. Sci. Instr. 81, 063105 (2010)CrossRefADSGoogle Scholar
  5. 5.
    U. Keller, A.C. Tropper, Passively modelocked surface-emitting semiconductor lasers. Phys. Rep. 429, 67–120 (2006)CrossRefADSGoogle Scholar
  6. 6.
    S.L. Chuang, Optoelectronic Devices (Wiley, New York, 1995)Google Scholar
  7. 7.
    C.W. Wilmsen, H. Temkin, L.A. Coldren (eds.), Vertical-Cavity Surface-Emitting Lasers: Design, Fabrication, Characterization, and Applications (Cambridge University Press, Cambridge, 1999)Google Scholar
  8. 8.
    M. Kuznetsov, F. Hakimi, R. Sprague, A. Mooradian, Design and characteristics of high-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams. IEEE J. Sel. Top. Quantum Electron. 5, 561–573 (1999)CrossRefGoogle Scholar
  9. 9.
    C. Steven, K. Contag, M. Larionov, A. Giesen, H. Hügel, A 1-kW CW thin disk laser. J. Sel. Top. Quantum Electron. 6, 650–657 (2000)CrossRefGoogle Scholar
  10. 10.
    J.L. Chilla, S.D. Butterworth, A. Zeitschel, J.P. Charles, A.L. Caprara, M.K. Reed, L. Spinelli, in High power optically pumped semiconductor lasers, ed. by R. Scheps, H.J. Hoffman. Solid State Lasers XIII: Technology and Devices. Proc. SPIE 5332, 143–150 (2004)Google Scholar
  11. 11.
    B. Rudin, A. Rutz, M. Hoffmann, D.J.H.C. Maas, A.-R. Bellancourt, E. Gini, T. Südmeyer, U. Keller, Highly efficient optically pumped vertical-emitting semiconductor laser with more than 20 W average output power in a fundamental transverse mode. Opt. Lett. 33, 2719–2721 (2008)CrossRefADSGoogle Scholar
  12. 12.
    C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, U. Keller, Q-switching stability limits of continuous-wave passive mode locking. J. Opt. Soc. Am. B 16, 46–56 (1999)CrossRefADSGoogle Scholar
  13. 13.
    M.E. Barnes, Z. Mihoubi, K.G. Wilcox, A.H. Quarterman, I. Farrer, D.A. Ritchie, A. Garnache, S. Hoogland, V. Apostolopoulos, A.C. Tropper, Gain bandwidth characterization of surface-emitting quantum well laser gain structures for femtosecond operation. Opt. Express 18, 21330–21341 (2010)CrossRefADSGoogle Scholar
  14. 14.
    S. Hoogland, S. Dhanjal, A.C. Tropper, J.S. Roberts, R. Häring, R. Paschotta, F. Morier-Genoud, U. Keller, Passively mode-locked diode-pumped surface-emitting semiconductor laser. IEEE Photon. Technol. Lett. 12, 1135–1137 (2000)CrossRefADSGoogle Scholar
  15. 15.
    R. Paschotta, R. Häring, A. Garnache, S. Hoogland, A.C. Tropper, U. Keller, Soliton-like pulseshaping mechanism in passively mode-locked surface-emitting semiconductor lasers. Appl. Phys. B 75, 445–451 (2002)CrossRefADSGoogle Scholar
  16. 16.
    A. Garnache, S. Hoogland, A.C. Tropper, I. Sagnes, G. Saint-Girons, J.S. Roberts, Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100 mW average power. Appl. Phys. Lett. 80, 3892–3894 (2002)CrossRefADSGoogle Scholar
  17. 17.
    S. Hoogland, A. Garnache, I. Sagnes, J.S. Roberts, A.C. Tropper, 10-GHz Train of Sub-500-fs optical soliton-like pulses from a surface-emitting semiconductor laser. IEEE Photon. Technol. Lett. 17, 267–269 (2005)CrossRefADSGoogle Scholar
  18. 18.
    S. Arahira, S. Oshiba, Y. Matsui, T. Kunii, Y. Ogawa, Terahertz-rate optical pulse generation from a passively mode-locked semiconductor laser diode. Opt. Lett. 19, 834–836 (1994)CrossRefADSGoogle Scholar
  19. 19.
    E.U. Rafailov, M.A. Cataluna, W. Sibbett, N.D. Il’inskaya, Yu. M. Zadiranov, A.E. Zhukov, V.M. Ustinov, D.A. Livshits, A.R. Kovsh, N.N. Ledentsov, High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser. Appl. Phys. Lett. 87, 081107 (2005)Google Scholar
  20. 20.
    P. Klopp, F. Saas, M. Zorn, M. Weyers, U. Griebner, 290-fs pulses from a semiconductor disk laser. Opt. Express 16, 5770–5775 (2008)CrossRefADSGoogle Scholar
  21. 21.
    K.G. Wilcox, Z. Mihoubi, G.J. Daniell, S. Elsmere, A. Quarterman, I. Farrer, D.A. Ritchie, A. Tropper, Ultrafast optical Stark mode-locked semiconductor laser. Opt. Lett. 33, 2797 (2008)CrossRefADSGoogle Scholar
  22. 22.
    P. Klopp, U. Griebner, M. Zorn, A. Klehr, A. Liero, M. Weyers, G. Erbert, Mode-locked InGaAs-AlGaAs disk laser generating sub-200-fs pulses, pulse picking and amplification by a tapered diode amplifier. Opt. Express 17, 10820 (2009)CrossRefADSGoogle Scholar
  23. 23.
    P. Klopp, U. Griebner, M. Zorn, M. Weyers, Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser. Appl. Phys. Lett. 98, 071103 (2011)CrossRefADSGoogle Scholar
  24. 24.
    D. Lorenser, J.H.C. Maas, H.J. Unold, A.-R. Bellancourt, B. Rudin, E. Gini, D. Ebeling, U. Keller, 50-GHz passively mode-locked surface-emitting semiconductor laser with 100-mW average output power. IEEE J. Quantum Electron. 42, 838–847 (2006)CrossRefADSGoogle Scholar
  25. 25.
    F.X. Kärtner, I.D. Jung, U. Keller, Soliton mode-locking with saturable absorbers. IEEE J. Selected Topics Quantum Electron. 2, 540–556 (1996)CrossRefGoogle Scholar
  26. 26.
    U. Zeimer, J. Grenzer, D. Korn, S. Döring, M. Zorn, W. Pittroff, U. Pietsch, F. Saas, M. Weyers, X-ray diffraction spot mapping—a tool to study structural properties of semiconductor disk laser devices. Phys. Stat. Sol. (a) 204, 2753–2759 (2007)Google Scholar
  27. 27.
    F. Saas, G. Steinmeyer, U. Griebner, M. Zorn, M. Weyers, Exciton resonance tuning for the generation of sub-picosecond pulses from a mode-locked semiconductor disk laser. Appl. Phys. Lett. 89, 141107 (2006)CrossRefADSGoogle Scholar
  28. 28.
    M.J. Lederer, B. Luther-Davies, H.H. Tan, C. Jagadish, N.N. Akhmediev, J.M. Soto-Crespo, Multipulse operation of a Ti:sapphire laser mode locked by an ion-implanted semiconductor saturable-absorber mirror. J. Opt. Soc. Am. B 16, 895–904 (1999)CrossRefADSGoogle Scholar
  29. 29.
    J.W. Tomm, V. Strelchuk, A. Gerhardt, U. Zeimer, M. Zorn, H. Kissel, M. Weyers, J. Jimenez, Properties of As+-implanted and annealed GaAs and InGaAs quantum wells: Structural and band-structure modifications. J. Appl. Phys. 95, 1122–1126 (2004)CrossRefADSGoogle Scholar
  30. 30.
    M. Zorn, P. Klopp, F. Saas, A. Ginolas, O. Krüger, U. Griebner, M. Weyers, Semiconductor components for femtosecond semiconductor disk lasers grown by MOVPE. J. Crystal Growth 310, 5187–5190 (2008)CrossRefADSGoogle Scholar
  31. 31.
    M. Haiml, R. Grange, U. Keller, Optical characterization of semiconductor saturable absorbers. Appl. Phys. B 79, 331–339 (2004)CrossRefGoogle Scholar
  32. 32.
    F. Saas, V. Talalaev, U. Griebner, J.W. Tomm, M. Zorn, A. Knigge, M. Weyers, Optically pumped semiconductor disk laser with graded and step indices. Appl. Phys. Lett. 89, 151120 (2006)CrossRefADSGoogle Scholar
  33. 33.
    M. Moenster, U. Griebner, W. Richter, G. Steinmeyer, Resonant saturable absorber mirrors for dispersion control in ultrafast lasers. IEEE J. Quantum Electron. 43, 174–181 (2007)CrossRefADSGoogle Scholar
  34. 34.
    P. Klopp, F. Saas, U. Griebner M. Zorn, M. Weyers, Passively mode-locked semiconductor disk laser generating sub-300-fs pulses. CLEO/QELS 2008, CThF6Google Scholar
  35. 35.
    M. Hoffmann, O.D. Sieber, D.J.H.C. Maas, V.J. Wittwer, M. Golling, T. Südmeyer, U. Keller, Experimental verification of soliton-like pulseshaping mechanisms in passively mode-locked VECSELs. Opt. Express 18, 10143–10153 (2010)CrossRefADSGoogle Scholar
  36. 36.
    E.J. Saarinen, R. Herda, O.G. Okhotnikov, Dynamics of pulse formation in mode-locked semiconductor disk lasers. J. Opt. Soc. Am. B 24, 2784–2790 (2007)CrossRefADSGoogle Scholar
  37. 37.
    A.H. Quarterman, K.G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S.P. Elsmere, I. Farrer, D.A. Ritchie, A. Tropper, A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses. Nat. Photonics 3, 729 (2009)Google Scholar
  38. 38.
    S. Arahira. S. Oshiba, Y. Matsui, T. Kunii, Y. Ogawa, 500 GHz optical short pulse generation from a monolithic passively mode-locked distributed Bragg reflector laser. Appl. Phys. Lett. 64, 1917–1919 (1994)Google Scholar
  39. 39.
    K.G. Wilcox, A.H. Quarterman, H. Beere, D.A. Ritchie, A.C. Tropper, High peak power femtosecond pulse passively mode-locked vertical-external-cavity surface-emitting laser. IEEE Photon. Technol. Lett. 22, 1021–1023 (2010)CrossRefADSGoogle Scholar
  40. 40.
    P. Dupriez, C. Finot, A. Malinowski, J.K. Sahu, J. Nilsson, D.J. Richardson, K.G. Wilcox, H.D. Foreman, A.C. Tropper, High-power, high repetition rate picosecond and femtosecond sources based on Yb-doped fiber amplification of VECSELs. Opt. Express 14, 9611–9616 (2006)CrossRefADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Uwe Griebner
    • 1
  • Peter Klopp
    • 1
  • Martin Zorn
    • 2
    • 3
  • Markus Weyers
    • 3
  1. 1.Max-Born-Institut für Nichtlineare Optik und KurzzeitspektroskopieBerlinGermany
  2. 2.JENOPTIK Diode Lab GmbHBerlinGermany
  3. 3.Ferdinand-Braun-InstitutLeibniz-Institut für HöchstfrequenztechnikBerlinGermany

Personalised recommendations