Advertisement

Imaging of Ventricular Fibrillation and Defibrillation: The Virtual Electrode Hypothesis

  • Bastiaan J. Boukens
  • Sarah R. Gutbrod
  • Igor R. Efimov
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 859)

Abstract

Ventricular fibrillation is the major underlying cause of sudden cardiac death. Understanding the complex activation patterns that give rise to ventricular fibrillation requires high resolution mapping of localized activation. The use of multi-electrode mapping unraveled re-entrant activation patterns that underlie ventricular fibrillation. However, optical mapping contributed critically to understanding the mechanism of defibrillation, where multi-electrode recordings could not measure activation patterns during and immediately after a shock. In addition, optical mapping visualizes the virtual electrodes that are generated during stimulation and defibrillation pulses, which contributed to the formulation of the virtual electrode hypothesis. The generation of virtual electrode induced phase singularities during defibrillation is arrhythmogenic and may lead to the induction of fibrillation subsequent to defibrillation. Defibrillating with low energy may circumvent this problem. Therefore, the current challenge is to use the knowledge provided by optical mapping to develop a low energy approach of defibrillation, which may lead to more successful defibrillation.

Keywords

Optical mapping Fibrillation Defibrillation Arrhythmias Imaging Virtual electrodes Stimulation Heart Re-entry Shock 

References

  1. Allessie MA, Bonke FI, Schopman FJ (1977) Circus movement in rabbit atrial muscle as a mechanism of tachycardia. III. The “leading circle” concept: a new model of circus movement in cardiac tissue without the involvement of an anatomical obstacle. Circ Res 41:9–18PubMedCrossRefGoogle Scholar
  2. Bishop MJ, Gavaghan DJ, Trayanova NA, Rodriguez B (2007) Photon scattering effects in optical mapping of propagation and arrhythmogenesis in the heart. J Electrocardiol 40:S75–S80PubMedCentralPubMedCrossRefGoogle Scholar
  3. Boukens B, Efimov I (2014) A century of optocardiography. IEEE Rev Biomed Eng 7:115–125PubMedCentralPubMedCrossRefGoogle Scholar
  4. Chattipakorn N, KenKnight BH, Rogers JM, Walker RG, Walcott GP, Rollins DL et al (1998) Locally propagated activation immediately after internal defibrillation. Circulation 97:1401–1410PubMedCrossRefGoogle Scholar
  5. Cheng Y, Mowrey KA, Van Wagoner DR, Tchou PJ, Efimov IR (1999a) Virtual electrode induced re-excitation: a basic mechanism of defibrillation. Circ Res 85:1056–1066PubMedCrossRefGoogle Scholar
  6. Cheng DK, Tung L, Sobie EA (1999b) Nonuniform responses of transmembrane potential during electric field stimulation of single cardiac cells. Am J Physiol 277:H351–H362PubMedGoogle Scholar
  7. Cheng Y, Nikolski V, Efimov IR (2000) Reversal of repolarization gradient does not reverse the chirality of shock-induced reentry in the rabbit heart. J Cardiovasc Electrophysiol 11:998–1007PubMedCrossRefGoogle Scholar
  8. Comtois P, Kneller J, Nattel S (2005) Of circles and spirals: bridging the gap between the leading circle and spiral wave concepts of cardiac reentry. Europace 7(Suppl 2):10–20PubMedCrossRefGoogle Scholar
  9. Coronel R, Wilms-Schopman FJG, Opthof T, Janse MJ (2009) Dispersion of repolarization and arrhythmogenesis. Heart Rhythm 6:537–543PubMedCrossRefGoogle Scholar
  10. de Bakker JM, van Capelle FJ, Janse MJ, Wilde AA, Coronel R, Becker AE et al (1988) Reentry as a cause of ventricular tachycardia in patients with chronic ischemic heart disease: electrophysiologic and anatomic correlation. Circulation 77:589–606PubMedCrossRefGoogle Scholar
  11. Dekker E (1970) Direct current make and break thresholds for pacemaker electrodes on the canine ventricle. Circ Res 27:811–823PubMedCrossRefGoogle Scholar
  12. Dillon SM (1991) Optical recordings in the rabbit heart show that defibrillation strength shocks prolong the duration of depolarization and the refractory period. Circ Res 69:842–856PubMedCrossRefGoogle Scholar
  13. Dillon SM, Kwaku KF (1998) Progressive depolarization: a unified hypothesis for defibrillation and fibrillation induction by shocks. J Cardiovasc Electrophysiol 9:529–552PubMedCrossRefGoogle Scholar
  14. Dower GE (1962) In Defence of the Intrinsic Deflection. Br Heart J 24:55–60PubMedCentralPubMedCrossRefGoogle Scholar
  15. Durrer D, Schoo L, Schuilenburg RM, Wellens HJ (1967) The role of premature beats in the initiation and the termination of supraventricular tachycardia in the Wolff-Parkinson-White syndrome. Circulation 36:644–662PubMedCrossRefGoogle Scholar
  16. Efimov I, Salama G (2012) The future of optical mapping is bright: RE: review on: “optical imaging of voltage and calcium in cardiac cells and tissues” by Herron, Lee, and Jalife. Circ Res 110:e70–e71PubMedCrossRefGoogle Scholar
  17. Efimov IR, Cheng YN, Biermann M, Van Wagoner DR, Mazgalev T, Tchou PJ (1997) Transmembrane voltage changes produced by real and virtual electrodes during monophasic defibrillation shock delivered by an implantable electrode. J Cardiovasc Electrophysiol 8:1031–1045PubMedCrossRefGoogle Scholar
  18. Efimov IR, Cheng Y, Van Wagoner DR, Mazgalev T, Tchou PJ (1998) Virtual electrode-induced phase singularity: a basic mechanism of defibrillation failure. Circ Res 82:918–925PubMedCrossRefGoogle Scholar
  19. Efimov IR, Gray RA, Roth BJ (2000) Virtual electrodes and deexcitation: new insights into fibrillation induction and defibrillation. J Cardiovasc Electrophysiol 11:339–353PubMedCrossRefGoogle Scholar
  20. Efimov IR, Nikolski VP, Salama G (2004) Optical imaging of the heart. Circ Res 95:21–33PubMedCrossRefGoogle Scholar
  21. Fabiato A, Coumel P, Gourgon R, Saumont R (1967) The threshold of synchronous response of the myocardial fibers. Application to the experimental comparison of the efficacy of different forms of electroshock defibrillation. Arch Mal Coeur Vaiss 60:527–544PubMedGoogle Scholar
  22. Fast VG, Kleber AG (1997) Role of wavefront curvature in propagation of cardiac impulse. Cardiovasc Res 33:258–271PubMedCrossRefGoogle Scholar
  23. Fast VG, Rohr S, Gillis AM, Kleber AG (1998) Activation of cardiac tissue by extracellular electrical shocks: formation of ‘secondary sources’ at intercellular clefts in monolayers of cultured myocytes. Circ Res 82:375–385PubMedCrossRefGoogle Scholar
  24. Fedorov VV, Lozinsky IT, Sosunov EA, Anyukhovsky EP, Rosen MR, Balke CW et al (2007) Application of blebbistatin as an excitation-contraction uncoupler for electrophysiologic study of rat and rabbit hearts. Heart Rhythm 4:619–626PubMedCrossRefGoogle Scholar
  25. Fishler MG (1997) The transient far-field response of a discontinuous one-dimensional cardiac fiber to subthreshold stimuli. IEEE Trans Biomed Eng 44:10–18PubMedCrossRefGoogle Scholar
  26. Furman S, Hurzeler P, Parker B (1975) Clinical thresholds of endocardial cardiac stimulation: a long-term study. J Surg Res 19:149–155PubMedCrossRefGoogle Scholar
  27. Garrey W (1914) The nature of fibrillary contraction of the heart: its relation to tissue mass and form. Am J Physiol 33:17Google Scholar
  28. Gillis AM, Fast VG, Rohr S, Kleber AG (2000) Mechanism of ventricular defibrillation. The role of tissue geometry in the changes in transmembrane potential in patterned myocyte cultures. Circulation 101:2438–2445PubMedCrossRefGoogle Scholar
  29. Gutbrod SR, Efimov IR (2013) Two centuries of resuscitation. J Am Coll Cardiol 62:2110–2111PubMedCrossRefGoogle Scholar
  30. Hoffman BF, Rosen MR (1981) Cellular mechanisms for cardiac arrhythmias. Circ Res 49:1–15PubMedCrossRefGoogle Scholar
  31. Hooker DR, Kouwenhoven WB, Langworthy OR (1933) The effect of alternating electrical currents on the heart. Am J Physiol 103:444–454Google Scholar
  32. Huikuri HV, Castellanos A, Myerburg RJ (2001) Sudden death due to cardiac arrhythmias. N Engl J Med 345:1473–1482PubMedCrossRefGoogle Scholar
  33. Janardhan AH, Li W, Fedorov VV, Yeung M, Wallendorf MJ, Schuessler RB et al (2012) A novel low-energy electrotherapy that terminates ventricular tachycardia with lower energy than a biphasic shock when antitachycardia pacing fails. J Am Coll Cardiol 60:2393–2398PubMedCrossRefGoogle Scholar
  34. Janardhan AH, Gutbrod SR, Li W, Lang D, Schuessler RB, Efimov IR (2014) Multistage electrotherapy delivered through chronically-implanted leads terminates atrial fibrillation with lower energy than a single biphasic shock. J Am Coll Cardiol 63:40–48PubMedCentralPubMedCrossRefGoogle Scholar
  35. Janks DL, Roth BJ (2002) Averaging over depth during optical mapping of unipolar stimulation. IEEE Trans Biomed Eng 49:1051–1054PubMedCrossRefGoogle Scholar
  36. Janse MJ, Rosen MR (2006) History of arrhythmias. Handb Exp Pharmacol (171): 1–39Google Scholar
  37. Jeffrey K (2001) Machines in our hearts: the cardiac pacemaker, the implantable defibrillator, and american health care. Johns Hopkins University Press, BaltimoreGoogle Scholar
  38. Josephson ME, Horowitz LN, Farshidi A (1978) Continuous local electrical activity. A mechanism of recurrent ventricular tachycardia. Circulation 57:659–665PubMedCrossRefGoogle Scholar
  39. Kay MW, Amison PM, Rogers JM (2004) Three-dimensional surface reconstruction and panoramic optical mapping of large hearts. IEEE Trans Biomed Eng 51:1219–1229PubMedCrossRefGoogle Scholar
  40. Kleber AG, Rudy Y (2004) Basic mechanisms of cardiac impulse propagation and associated arrhythmias. Physiol Rev 84:431–488PubMedCrossRefGoogle Scholar
  41. Knisley SB, Blitchington TF, Hill BC, Grant AO, Smith WM, Pilkington TC et al (1993) Optical measurements of transmembrane potential changes during electric field stimulation of ventricular cells. Circ Res 72:255–270PubMedCrossRefGoogle Scholar
  42. Kong CY, Nattinger KJ, Hayeck TJ, Omer ZB, Wang YC, Spechler SJ et al (2011) The impact of obesity on the rise in esophageal adenocarcinoma incidence: estimates from a disease simulation model. Cancer Epidemiol Biomarkers Prev 20:2450–2456PubMedCentralPubMedCrossRefGoogle Scholar
  43. Lou Q, Ripplinger CM, Bayly PV, Efimov IR (2008) Quantitative panoramic imaging of epicardial electrical activity. Ann Biomed Eng 36:1649–1658PubMedCentralPubMedCrossRefGoogle Scholar
  44. Lou Q, Li W, Efimov IR (2012) The role of dynamic instability and wavelength in arrhythmia maintenance as revealed by panoramic imaging with blebbistatin vs. 2,3-butanedione monoxime. Am J Physiol Heart Circ Physiol 302:H262–H269PubMedCentralPubMedCrossRefGoogle Scholar
  45. Mehra R, Furman S (1979) Comparison of cathodal, anodal, and bipolar strength-interval curves with temporary and permanent pacing electrodes. Br Heart J 41:468–476PubMedCentralPubMedCrossRefGoogle Scholar
  46. Mehra R, Furman S, Crump JF (1977) Vulnerability of the mildly ischemic ventricle to cathodal, anodal, and bipolar stimulation. Circ Res 41:159–166PubMedCrossRefGoogle Scholar
  47. Miller WT, Geselowitz DB (1978) Simulation studies of the electrocardiogram. I. The normal heart. Circ Res 43:301–315PubMedCrossRefGoogle Scholar
  48. Mines GR (1913) On dynamic equilibrium of the heart. J Physiol 46:349–382PubMedCentralPubMedCrossRefGoogle Scholar
  49. Mines GR (2010) On circulating excitations in heart muscle and their possible relation to tachycardia and fibrillation. Trans Roy Soc Can 8:43Google Scholar
  50. Niederer S, Mitchell L, Smith N, Plank G (2011) Simulating human cardiac electrophysiology on clinical time-scales. Front Physiol 2:14PubMedCentralPubMedCrossRefGoogle Scholar
  51. Nikolski V, Efimov IR (2000) Virtual electrode polarization of ventricular epicardium during bipolar stimulation. J Cardiovasc Electrophysiol 11:605PubMedCrossRefGoogle Scholar
  52. Nikolski VP, Sambelashvili AT, Efimov IR (2002) Mechanisms of make and break excitation revisited: paradoxical break excitation during diastolic stimulation. Am J Physiol Heart Circ Physiol 282:H565–H575PubMedCrossRefGoogle Scholar
  53. Pogwizd SM, Corr PB (1987) Reentrant and nonreentrant mechanisms contribute to arrhythmogenesis during early myocardial ischemia: results using three-dimensional mapping. Circ Res 61:352–371PubMedCrossRefGoogle Scholar
  54. Potse M (2012) Mathematical modeling and simulation of ventricular activation sequences: implications for cardiac resynchronization therapy. J Cardiovasc Transl Res 5:146–158PubMedCentralPubMedCrossRefGoogle Scholar
  55. Ramshesh VK, Knisley SB (2003) Spatial localization of cardiac optical mapping with multiphoton excitation. J Biomed Opt 8:253–259PubMedCrossRefGoogle Scholar
  56. Ripplinger CME, Igor R (2009) The virtual electrode hypothesis of defibrillation. In: Efimov IR, Kroll MW, Tchou P (eds) Cardiac bioelectric therapy: mechanisms and practical implications. Springer Science + Business Media, New YorkGoogle Scholar
  57. Ripplinger CM, Krinsky VI, Nikolski VP, Efimov IR (2006) Mechanisms of unpinning and termination of ventricular tachycardia. Am J Physiol Heart Circ Physiol 291:H184–H192PubMedCrossRefGoogle Scholar
  58. Ripplinger CM, Lou Q, Li W, Hadley J, Efimov IR (2009) Panoramic imaging reveals basic mechanisms of induction and termination of ventricular tachycardia in rabbit heart with chronic infarction: implications for low-voltage cardioversion. Heart Rhythm 6:87–97PubMedCentralPubMedCrossRefGoogle Scholar
  59. Rogers JM, Walcott GP, Gladden JD, Melnick SB, Kay MW (2007) Panoramic optical mapping reveals continuations epicardial reentry during ventricular fibrillation in the isolated swine heart. Biophys J 92:1090–1095PubMedCentralPubMedCrossRefGoogle Scholar
  60. Sepulveda NG, Wikswo JP (1994) Bipolar stimulation of cardiac tissue using an anisotropic bidomain model. J Cardiovasc Electrophysiol 5:258–267PubMedCrossRefGoogle Scholar
  61. Sepulveda NG, Roth BJ, Wikswo JP (1989) Current injection into a two-dimensional anisotropic bidomain. Biophys J 55:987–999PubMedCentralPubMedCrossRefGoogle Scholar
  62. Shenassa M, Borggrefe M, Briethardt G (2013) Cardiac mapping, 4th edn. Elsmford Blackwell Publishing/Futura Division, Armonk, NYCrossRefGoogle Scholar
  63. Sobie EA, Susil RC, Tung L (1997) A generalized activating function for predicting virtual electrodes in cardiac tissue. Biophys J 73:1410–1423PubMedCentralPubMedCrossRefGoogle Scholar
  64. Spach MS, Barr RC, Serwer GA, Kootsey JM, Johnson EA (1972) Extracellular potentials related to intracellular action potentials in the dog Purkinje system. Circ Res 30:505–519PubMedCrossRefGoogle Scholar
  65. Stevenson WG, Wiener I, Weiss JN (1986) Comparison of bipolar and unipolar programmed electrical stimulation for the initiation of ventricular arrhythmias: significance of anodal excitation during bipolar stimulation. Circulation 73:693–700PubMedCrossRefGoogle Scholar
  66. Sweeney RJ, Gill RM, Steinberg MI, Reid PR (1990) Ventricular refractory period extension caused by defibrillation shocks. Circulation 82:965–972PubMedCrossRefGoogle Scholar
  67. Taccardi B, Arisi G, Macchi E, Baruffi S, Spaggiari S (1987) A new intracavitary probe for detecting the site of origin of ectopic ventricular beats during one cardiac cycle. Circulation 75:272–281PubMedCrossRefGoogle Scholar
  68. Tereshchenko LG, Faddis MN, Fetics BJ, Zelik KE, Efimov IR, Berger RD (2009) Transient local injury current in right ventricular electrogram after implantable cardioverter-defibrillator shock predicts heart failure progression. J Am Coll Cardiol 54:822–828PubMedCentralPubMedCrossRefGoogle Scholar
  69. Trayanova N, Plank G, Rodriguez B (2006) What have we learned from mathematical models of defibrillation and postshock arrhythmogenesis? Application of bidomain simulations. Heart Rhythm 3:1232–1235PubMedCentralPubMedCrossRefGoogle Scholar
  70. White JB, Walcott GP, Pollard AE, Ideker RE (1998) Myocardial discontinuities: a substrate for producing virtual electrodes that directly excite the myocardium by shocks. Circulation 97:1738–1745PubMedCrossRefGoogle Scholar
  71. Wiener N, Rosenblueth A (1946) The mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle. Arch Inst Cardiol Mex 16:205–265PubMedGoogle Scholar
  72. Wiggers CJ (1940) The physiological basis for cardiac resuscitation from ventricular fibrillation- method for serial defibrillation. Am Heart J 20:413–422CrossRefGoogle Scholar
  73. Wikswo JP Jr, Wisialowski TA, Altemeier WA, Balser JR, Kopelman HA, Roden DM (1991) Virtual cathode effects during stimulation of cardiac muscle Two-dimensional in vivo experiments. Circ Res 68:513–530PubMedCrossRefGoogle Scholar
  74. Wikswo JP, Lin SF, Abbas RA (1995) Virtual electrodes in cardiac tissue: a common mechanism for anodal and cathodal stimulation. Biophys J 69:2195–2210PubMedCentralPubMedCrossRefGoogle Scholar
  75. Yamanouchi Y, Cheng Y, Tchou PJ, Efimov IR (2001) The mechanisms of vulnerable window: the role of virtual electrodes and shock polarity. Can J Physiol Pharmacol 79:25–33PubMedCrossRefGoogle Scholar
  76. Zipes DP, Fischer J, King RM, Nicoll AD, Jolly WW (1975) Termination of ventricular fibrillation in dogs by depolarizing a critical amount of myocardium. Am J Cardiol 36:37–44PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Bastiaan J. Boukens
    • 1
  • Sarah R. Gutbrod
    • 1
  • Igor R. Efimov
    • 1
    • 2
  1. 1.Department of Biomedical EngineeringWashington UniversitySt LouisUSA
  2. 2.L’Institut de rythmologie et modélisation cardiaque LIRYCUniversité de BordeauxBordeauxFrance

Personalised recommendations