Formal Verification of Distributed Task Migration for Thermal Management in On-Chip Multi-core Systems Using nuXmv

  • Syed Ali Asadullah Bukhari
  • Faiq Khalid LodhiEmail author
  • Osman Hasan
  • Muhammad Shafique
  • Jörg Henkel
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 476)


With the growing interest in using distributed task migration algorithms for dynamic thermal management (DTM) in multi-core chips comes the challenge of their rigorous verification. Traditional analysis techniques, like simulation and emulation, cannot cope with the design complexity and distributed nature of such algorithms and thus compromise on the rigor and accuracy of the analysis results. Formal methods, especially model checking, can play a vital role in alleviating these issues. Due to the presence of continuous elements, such as temperatures, and the large number of cores running the distributed algorithms in this analysis, we propose to use the nuXmv model checker to analyze distributed task migration algorithms for DTM. The main motivations behind this choice include the ability to handle the \(real\) numbers and the scalable SMT-based bounded model checking capabilities in nuXmv that perfectly fit the stability and deadlock analysis requirements of the distributed DTM algorithms. The paper presents the detailed analysis of a state-of-the-art task migration algorithm of distributed DTM for many-core systems. The functional and timing verification is done on a larger grid size of \(9\times 9\) cores, which is thermally managed by the selected DTM approach. The results indicate the usefulness of the proposed approach, as we have been able to catch a couple of discrepancies in the original model and gain many new insights about the behavior of the algorithm.


Model checking Thermal management Task migration Multi-core architectures 



This work is supported in parts by the DAAD “Deutsch-Pakistanische Forschungskooperationen” project.


  1. 1.
    Brooks, D., Martonosi, M.: Dynamic thermal management for high-performance microprocessors. In: High-Performance Computer Architecture, pp. 171–182. IEEE (2001)Google Scholar
  2. 2.
    Bukhari, S.A.A., Lodhi, F.K.: Formal verification of distributed task migration for thermal management in on-chip multi-core systems using nuXmv, National University of Sciences and Technology (2014).
  3. 3.
    Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A., Mover, S., Roveri, M., Tonetta, S.: The nuXmv Symbolic model checker. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 334–342. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  4. 4.
    Chen, F., Cao, Y., Ren, W.: Distributed computation of the average of multiple time-varying reference signals. In: American Control Conference, pp. 1650–1655 (2011)Google Scholar
  5. 5.
    Chen, F., Cao, Y., Ren, W.: Distributed average tracking of multiple time-varying reference signals with bounded derivatives. IEEE Trans. Autom. Control 57(12), 3169–3174 (2012)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999) Google Scholar
  7. 7.
    Donald, J., Martonosi, M.: Techniques for multicore thermal management: classification and new exploration. In: Computer Architecture, pp. 78–88 (2006)Google Scholar
  8. 8.
    Donald, J., Martonosi, M.: Techniques for multicore thermal management: Classification and new exploration. In: ACM SIGARCH Computer Architecture News. vol. 34, pp. 78–88. IEEE Computer Society (2006)Google Scholar
  9. 9.
    Drechsler, R.: Advanced Formal Verification. Falk Symposium Series. Springer, Boston (2004) CrossRefzbMATHGoogle Scholar
  10. 10.
    Dunn, D.: Intel delays Montecito in roadmap shakeup. EE Times, Manufacturing/Packaging, October 2005Google Scholar
  11. 11.
    Ebi, T., Faruque, M., Henkel, J.: Tape: thermal-aware agent-based power econom multi/many-core architectures. In: Computer-Aided Design. pp. 302–309 (2009)Google Scholar
  12. 12.
    Ebi, T., Kramer, D., Karl, W., Henkel, J.: Economic learning for thermal-aware power budgeting in many-core architectures. In: Hardware/Software Codesign and System Synthesis.pp. 189–196, ACM (2011)Google Scholar
  13. 13.
    Ge, Y., Malani, P., Qiu, Q.: Distributed task migration for thermal management in many-core systems. In: Design Automation Conference, pp. 579–584. ACM (2010)Google Scholar
  14. 14.
    Glocker, E., Schmitt-Landsiedel, D.: Modeling of temperature scenarios in a multicore processor system. Adv. Radio Sci. 11, 219–225 (2013)CrossRefGoogle Scholar
  15. 15.
    Henkel, J., Ebi, T., Amrouch, H., Khdr, H.: Thermal management for dependable on-chip systems. In: Asia and South Pacific Design Automation Conference, pp. 113–118 (2013)Google Scholar
  16. 16.
    Holzmann, G.J.: The model checker SPIN. IEEE Trans. softw. eng. 23(5), 279–295 (1997)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Ismail, M., Hasan, O., Ebi, T., Shafique, M., Henkel, J.: Formal verification of distributed dynamic thermal management. In: Computer-Aided Design, pp. 248–255. IEEE (2013)Google Scholar
  18. 18.
  19. 19.
    Kadin, M., Reda, S., Uht, A.: Central vs. distributed dynamic thermal management for multi-core processors: which one is better? In: Great Lakes Symposium on VLSI, pp. 137–140. ACM (2009)Google Scholar
  20. 20.
    Khdr, H., Ebi, T., Shafique, M., Amrouch, H., Henkel, J.: mDTM: multi-objective dynamic thermal management for on-chip systems. In: Design, Automation Test in Europe, p. 330 (2014)Google Scholar
  21. 21.
    Kong, J., Chung, S.W., Skadron, K.: Recent thermal management techniques for microprocessors. ACM Comput. Surv. 44(3), 13:1–13:42 (2012)CrossRefGoogle Scholar
  22. 22.
    Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Commun. ACM 21(7), 558–565 (1978)CrossRefzbMATHGoogle Scholar
  23. 23.
    Liu, Z., Huang, X., Tan, S.D., Wang, H., Tang, H.: Distributed task migration for thermal hot spot reduction in many-core microprocessors. In: ASIC, pp. 1–4 (2013)Google Scholar
  24. 24.
    Liu, Z., Xu, T., Tan, S.D., Wang, H.: Dynamic thermal management for multi-core microprocessors considering transient thermal effects. In: Design Automation Conference, pp. 473–478 (2013)Google Scholar
  25. 25.
    Lungu, A., Bose, P., Sorin, D.J., German, S., Janssen, G.: Multicore power management: Ensuring robustness via early-stage formal verification. In: Formal Methods and Models for Codesign, pp. 78–87. IEEE (2009)Google Scholar
  26. 26.
    MathSAT 5: (2014).
  27. 27.
    Mukherjee, R., Memik, S.O.: Physical aware frequency selection for dynamic thermal management in multi-core systems. In: Computer-aided Design, pp. 547–552. ACM (2006)Google Scholar
  28. 28.
    Nath, R., Carmean, D., Rosing, T.S.: Power modeling and thermal management techniques for manycores. In: Computers and Communications. pp. 740–746. IEEE (2013)Google Scholar
  29. 29.
    Norman, G., Parker, D., Kwiatkowska, M., Shukla, E., Gupta, R.: Using probabilistic model checking for dynamic power management. Formal Aspects Comput. 17, 202–215 (2003)Google Scholar
  30. 30.
    nuSMV: (2014).
  31. 31.
    nuXmv: (2014).
  32. 32.
    Salami, B., Baharani, M., Noori, H.: An adaptive temperature threshold schema for dynamic thermal management of multi-core processors. In: Computer Architecture and Digital Systems, pp. 119–120 (2013)Google Scholar
  33. 33.
    Schauer, B.: Multicore processors-a necessity. In: ProQuest discovery guides, pp. 1–14 (2008)Google Scholar
  34. 34.
    Shafique, M., Henkel, J.: Agent-based distributed power management for kilo-core processors. In: Computer-Aided Design, pp. 153–160. IEEE (2013)Google Scholar
  35. 35.
    Shukla, S., Gupta, R.: A model checking approach to evaluating system level dynamic power management policies for embedded systems. In: High-Level Design Validation and Test Workshop, pp. 53–57. IEEE (2001)Google Scholar
  36. 36.
    Singh, A., Shafique, M., Kumar, A., Henkel, J.: Mapping on multi/many-core systems: Survey of current and emerging trends. In: Design Automation Conference (DAC), ACM/EDAC/IEEE.pp. 1–10 (2013)Google Scholar
  37. 37.
    Weiss, G.: Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence. MIT Press, Cambridge (1999)Google Scholar
  38. 38.
  39. 39.
    Wyngaard, J., Inggs, M., Collins, J., Farrimond, B.: Towards a many-core architecture for HPC. In: Field Programmable Logic and Applications, pp. 1–4 (2013)Google Scholar
  40. 40.
    Yang, J., Zhou, X., Chrobak, M., Zhang, Y., Jin, L.: Dynamic thermal management through task scheduling. In: Performance Analysis of Systems and software, pp. 191–201 (2008)Google Scholar
  41. 41.
    Yun, B., Shin, K.G., Wang, S.: Predicting thermal behavior for temperature management in time-critical multicore systems. In: IEEE Real-Time and Embedded Technology and Applications Symposium, pp. 185–194 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Syed Ali Asadullah Bukhari
    • 1
  • Faiq Khalid Lodhi
    • 1
    Email author
  • Osman Hasan
    • 1
  • Muhammad Shafique
    • 2
  • Jörg Henkel
    • 2
  1. 1.School of Electrical Engineering and Computer Science (SEECS)National University of Sciences and Technology (NUST)IslamabadPakistan
  2. 2.Chair for Embedded Systems (CES)Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations