Shape Optimization in Electromagnetic Applications

  • Johannes SemmlerEmail author
  • Lukas Pflug
  • Michael Stingl
  • Günter Leugering
Part of the International Series of Numerical Mathematics book series (ISNM, volume 166)


We consider shape optimization for objects illuminated by light. More precisely, we focus on time-harmonic solutions of the Maxwell system in curl-curl-form scattered by an arbitrary shaped rigid object. Given a class of cost functionals, including the scattered energy and the extinction cross section, we develop an adjoint-based shape optimization scheme which is then applied to two key applications.


Relative Permeability Shape Optimization Extinction Spectrum Perfectly Match Layer Illumination Direction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    V. Akcelik, G. Biros, O. Ghattas, D. Keyes, K. Ko, L.-Q. Lee, E.G. Ng, Adjoint methods for electromagnetic shape optimization of the low-loss cavity for the international linear collider. J. Phys. Conf. Ser. 16, 435–445 (2005). ISSN 1742-6588. doi: 10.1088/1742-6596/16/1/059
  2. 2.
    G. Allaire, Conception Optimale de Structures (Springer, Berlin, 2006)zbMATHGoogle Scholar
  3. 3.
    L. Andersen, J. Volakis, Hierarchical tangential vector finite elements for tetrahedra. IEEE Microw. Guid. Wave Lett. 8(3), 127–129, (1998). ISSN 10518207.doi: 10.1109/75.661137
  4. 4.
    A. Andryieuski, R. Malureanu, G. Biagi, T. Holmgaard, A. Lavrinenko, Compact dipole nanoantenna coupler to plasmonic slot waveguide. Opt. Lett. 37(6), 1124–1126 (2012). ISSN 1539-4794. doi: 10.1364/OL.37.001124
  5. 5.
    E. Angerson, Z. Bai, J. Dongarra, A. Greenbaum, A. McKenney, J. Du Croz, S. Hammarling, J. Demmel, C. Bischof, D. Sorensen, LAPACK: a portable linear algebra library for high-performance computers, in Proceedings SUPERCOMPUTING’90 (IEEE Computer Society Press, 1990), pp. 2–11. ISBN 0-8186-2056-0. doi: 10.1109/SUPERC.1990.129995
  6. 6.
    J.-P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114(2), 185–200 (1994). ISSN 00219991. doi: 10.1006/jcph.1994.1159
  7. 7.
    C. Bohren, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983)Google Scholar
  8. 8.
    J. Cagnol, M. Eller, Boundary regularity for Maxwell’s equations with applications to shape optimization. J. Differ. Equ. 250(2), 1114–1136 (2011). ISSN 00220396.doi: 10.1016/j.jde.2010.08.004
  9. 9.
    M. Cessenat, Mathematical Methods in Electromagnetism: Linear Theory and Applications (World Scientific, Singapore, 1996)CrossRefzbMATHGoogle Scholar
  10. 10.
    M. Daimon, A. Masumura, Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region. Appl. Opt. 46(18), 3811 (2007). ISSN 0003-6935.doi: 10.1364/AO.46.003811
  11. 11.
    M. Delfour, Shapes and Geometries: Analysis, Differential Calculus, and Optimization (Society for Industrial and Applied Mathematics, Philadelphia, 2001)zbMATHGoogle Scholar
  12. 12.
    J. Haslinger, Introduction to Shape Optimization: Theory, Approximation, and Computation (SIAM Society for Industrial and Applied Mathematics, Philadelphia, 2003)CrossRefzbMATHGoogle Scholar
  13. 13.
    M. Hintermüller, A. Laurain, I. Yousept, Shape sensitivities for an inverse problem in magnetic induction tomography based on the Eddy current model. (2014)Google Scholar
  14. 14.
    P.B. Johnson, R.W. Christy, Optical constants of the noble metals. Phys. Rev. B 6(12), 4370–4379 (1972). ISSN 0556-2805. doi: 10.1103/PhysRevB.6.4370
  15. 15.
    A. Kriesch, S.P. Burgos, D. Ploss, H. Pfeifer, H.A. Atwater, U. Peschel, Functional plasmonic nanocircuits with low insertion and propagation losses. Nano Lett. 13(9), 4539–45, 2013. ISSN 1530-6992. doi: 10.1021/nl402580c
  16. 16.
    C.M. Lalau-Keraly, S. Bhargava, O.D. Miller, E. Yablonovitch, Adjoint shape optimization applied to electromagnetic design. Opt. Express 21(18), 21693–21701 (2013). ISSN 1094-4087. doi: 10.1364/OE.21.021693
  17. 17.
    P. Li, An inverse cavity problem for Maxwell’s equations. J. Differ. Equ. 252(4), 3209–3225 (2012). ISSN 00220396. doi: 10.1016/j.jde.2011.10.023
  18. 18.
    M. Mishchenko, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University Press, Cambridge, 2002)Google Scholar
  19. 19.
    P. Monk, Finite Element Methods for Maxwell’s Equations (Clarendon Press, Oxford, 2003)CrossRefzbMATHGoogle Scholar
  20. 20.
    C. Müller, Foundations of the Mathematical Theory of Electromagnetic Waves (Springer, Berlin, 1969). ISBN 978-3-662-11775-0. doi: 10.1007/978-3-662-11773-6
  21. 21.
    J. C. Nédélec, A new family of mixed finite elements in \(\mathbb{R}^3\). Numer. Math. 50(1), 57–81 (1986). ISSN 0029-599X. doi: 10.1007/BF01389668
  22. 22.
    D.M. Nguyen, A. Evgrafov, J. Gravesen. Isogeometric shape optimization for electromagnetic scattering problems. Prog. Electromagn. Res. B. 45, 117–146 (2012). ISSN 1937-6472. doi: 10.2528/PIERB12091308
  23. 23.
    T. Radhakrishnan. Further studies on the temperature variation of the refractive index of crystals. Proc. Indian Acad. Sci. Sect. A, 33(1), 22–34 (1951). ISSN 0370-0089.doi: 10.1007/BF03172255
  24. 24.
    J. Schöberl, S. Zaglmayr, High order Nédélec elements with local complete sequence properties. COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 24(2), 374–384 (2005). ISSN 0332-1649. doi: 10.1108/03321640510586015
  25. 25.
    J. Schwinger, L.L.J. Deraad, K.A. Milton, Classical Electrodynamics (Westview Press, Boston, 1998). ISBN 0813346622Google Scholar
  26. 26.
    Science & Technology Facility Council. HSL, a collection of Fortran codes for large scale scientific computation (2013).
  27. 27.
    H. Si, TetGen: a quality tetrahedral mesh generator and 3D delaunay triangulator (2013).
  28. 28.
    J. Sokolowski, Introduction to Shape Optimization: Shape Sensitivity Analysis (Springer, Berlin, 1992). ISBN 9783540541776Google Scholar
  29. 29.
    J. Stratton, Electromagnetic Theory (McGraw-Hill Book Company Inc., New York, 1941). ISBN 9780070621503Google Scholar
  30. 30.
    The MathWorks Inc. MATLAB Release 2014a (2014).
  31. 31.
    P. Varga, P. Török, The Gaussian wave solution of Maxwell’s equations and the validity of scalar wave approximation. Opt. Commun. 152(1–3), 108–118 (1998). doi: 10.1016/S0030-4018(98)00092-3 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Johannes Semmler
    • 1
    Email author
  • Lukas Pflug
    • 1
  • Michael Stingl
    • 1
  • Günter Leugering
    • 1
  1. 1.Institute of Applied Mathematics 2Friedrich-Alexander University Erlangen-NürnbergErlangenGermany

Personalised recommendations