Advertisement

Compositional Verification of Parameterised Timed Systems

  • Lăcrămioara Aştefănoaei
  • Souha Ben Rayana
  • Saddek Bensalem
  • Marius Bozga
  • Jacques Combaz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9058)

Abstract

In this paper we address the problem of uniform verification of parameterised timed systems (PTS): “does a given safety state property hold for a system containing n identical timed components regardless of the value of n?”. Our approach is compositional and consequently it suits quite well such systems in that it presents the advantage of reusing existing local characterisations at the global level of system characterisation. Additionally, we show how a direct consequence of the modelling choices adopted in our framework leads to an elegant application of the presented method to topologies such as stars and rings.

Keywords

Model Check Interaction Pattern Mutual Exclusion Ring Topology Star Topology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.: General decidability theorems for infinite-state systems. In: LICS (1996)Google Scholar
  2. 2.
    Abdulla, P.A., Delzanno, G., Rezine, O., Sangnier, A., Traverso, R.: On the Verification of Timed Ad Hoc Networks. In: Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS, vol. 6919, pp. 256–270. Springer, Heidelberg (2011) Google Scholar
  3. 3.
    Abdulla, P.A., Deneux, J., Mahata, P.: Closed, open, and robust timed networks. ENTCS 138(3) (2005)Google Scholar
  4. 4.
    Abdulla, P.A., Jonsson, B.: On the Existence of Network Invariants for Verifying Parameterized Systems. In: Olderog, E.-R., Steffen, B. (eds.) Correct System Design. LNCS, vol. 1710, pp. 180–197. Springer, Heidelberg (1999) Google Scholar
  5. 5.
    Abdulla, P.A., Jonsson, B.: Model checking of systems with many identical timed processes. Theor. Comput. Sci. 290(1) (2003)Google Scholar
  6. 6.
    Abdulla, P.A., Jonsson, B., Nilsson, M., Saksena, M.: A Survey of Regular Model Checking. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 35–48. Springer, Heidelberg (2004) Google Scholar
  7. 7.
    Alur, R.: Timed Automata. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 8–22. Springer, Heidelberg (1999) Google Scholar
  8. 8.
    Alur, R., Courcoubetis, C., Dill, D.L., Halbwachs, N., Wong-Toi, H.: An implementation of three algorithms for timing verification based on automata emptiness. In: RTSS (1992)Google Scholar
  9. 9.
    Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. (1994)Google Scholar
  10. 10.
    Aştefănoaei, L., Ben Rayana, S., Bensalem, S., Bozga, M., Combaz, J.: Compositional Invariant Generation for Timed Systems. In: \’{A}brahám, E., Havelund, K. (eds.) TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 263–278. Springer, Heidelberg (2014) Google Scholar
  11. 11.
    Baukus, K., Bensalem, S., Lakhnech, Y., Stahl, K.: Abstracting WS1S Systems to Verify Parameterized Networks. In: Graf, S. (ed.) TACAS 2000. LNCS, vol. 1785, pp. 188–203. Springer, Heidelberg (2000) Google Scholar
  12. 12.
    Baukus, K., Stahl, K., Bensalem, S., Lakhnech, Y.: Networks of processes with parameterized state space. ENTCS 50(4) (2001)Google Scholar
  13. 13.
    Bensalem, S., Bozga, M., Sifakis, J., Nguyen, T.-H.: Compositional Verification for Component-Based Systems and Application. In: Cha, S.S., Choi, J.-Y., Kim, M., Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 64–79. Springer, Heidelberg (2008) Google Scholar
  14. 14.
    Bouajjani, A., Jurski, Y., Sighireanu, M.: A Generic Framework for Reasoning About Dynamic Networks of Infinite-State Processes. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 690–705. Springer, Heidelberg (2007) Google Scholar
  15. 15.
    Bruttomesso, R., Carioni, A., Ghilardi, S., Ranise, S.: Automated Analysis of Parametric Timing-Based Mutual Exclusion Algorithms. In: Goodloe, A.E., Person, S. (eds.) NFM 2012. LNCS, vol. 7226, pp. 279–294. Springer, Heidelberg (2012) Google Scholar
  16. 16.
    Carioni, A., Ghilardi, S., Ranise, S.: Mcmt in the land of parametrized timed automata. In: VERIFY@IJCAR (2010)Google Scholar
  17. 17.
    Emerson, E.A., Kahlon, V.: Reducing model checking of the many to the few. In: CADE (2000)Google Scholar
  18. 18.
    Emerson, E.A., Namjoshi, K.S.: Reasoning about rings. In: POPL (1995)Google Scholar
  19. 19.
    Emerson, E.A., Sistla, A. P.: Symmetry and model checking. Formal Methods in System Design 9(1/2) (1996)Google Scholar
  20. 20.
    Finkel, A.: A generalization of the procedure of karp and miller to well structured transition systems. In: ICALP (1987)Google Scholar
  21. 21.
    Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theor. Comput. Sci. 256(1-2) (2001)Google Scholar
  22. 22.
    German, S.M., Sistla, A.P.: Reasoning about systems with many processes. J. ACM 39(3) (1992)Google Scholar
  23. 23.
    Ghilardi, S., Nicolini, E., Ranise, S., Zucchelli, D.: Towards SMT Model Checking of Array-Based Systems. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 67–82. Springer, Heidelberg (2008) Google Scholar
  24. 24.
    Habermehl, P., Iosif, R., Vojnar, T.: What Else Is Decidable about Integer Arrays? In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 474–489. Springer, Heidelberg (2008) Google Scholar
  25. 25.
    Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for real-time systems. Inf. Comput. (1994)Google Scholar
  26. 26.
    Ihlemann, C., Jacobs, S., Sofronie-Stokkermans, V.: On Local Reasoning in Verification. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 265–281. Springer, Heidelberg (2008) Google Scholar
  27. 27.
    Johnson, T.T., Mitra, S.: A Small Model Theorem for Rectangular Hybrid Automata Networks. In: Giese, H., Rosu, G. (eds.) FORTE 2012 and FMOODS 2012. LNCS, vol. 7273, pp. 18–34. Springer, Heidelberg (2012) Google Scholar
  28. 28.
    Legay, A., Bensalem, S., Boyer, B., Bozga, M.: Incremental generation of linear invariants for component-based systems. In: ACSD (2013)Google Scholar
  29. 29.
    Lesens, D., Halbwachs, N., Raymond, P.: Automatic verification of parameterized linear networks of processes. In: POPL (1997)Google Scholar
  30. 30.
    Lesens, D., Halbwachs, N., Raymond, P.: Automatic verification of parameterized networks of processes. Theor. Comput. Sci. 256(1–2) (2001)Google Scholar
  31. 31.
    Namjoshi, K.S.: Symmetry and Completeness in the Analysis of Parameterized Systems. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 299–313. Springer, Heidelberg (2007)Google Scholar
  32. 32.
    Pnueli, Amir, Ruah, Sitvanit, Zuck, Lenore D.: Automatic Deductive Verification with Invisible Invariants. In: Margaria, Tiziana, Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 82–97. Springer, Heidelberg (2001) Google Scholar
  33. 33.
    Reich, J.: Processes, roles and their interactions. In: Proceedings of IWIGP (2012)Google Scholar
  34. 34.
    Wolper, P., Lovinfosse, V.: Verifying properties of large sets of processes with network invariants. In: AVMFSS (1989)Google Scholar
  35. 35.
    Yi, W., Pettersson, P., Daniels, M.: Automatic verification of real-time communicating systems by constraint-solving. In: FORTE (1994)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Lăcrămioara Aştefănoaei
    • 1
    • 2
  • Souha Ben Rayana
    • 1
    • 2
  • Saddek Bensalem
    • 1
    • 2
  • Marius Bozga
    • 1
    • 2
  • Jacques Combaz
    • 1
    • 2
  1. 1.Université de GrenobleVerimagGrenobleFrance
  2. 2.CNRSVerimagGrenobleFrance

Personalised recommendations