A Greedy Approach for the Efficient Repair of Stochastic Models

  • Shashank Pathak
  • Erika Ábrahám
  • Nils Jansen
  • Armando Tacchella
  • Joost-Pieter Katoen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9058)

Abstract

For discrete-time probabilistic models there are efficient methods to check whether they satisfy certain properties. If a property is refuted, available techniques can be used to explain the failure in form of a counterexample. However, there are no scalable approaches to repair a model, i.e., to modify it with respect to certain side conditions such that the property is satisfied. In this paper we propose such a method, which avoids expensive computations and is therefore applicable to large models. A prototype implementation is used to demonstrate the applicability and scalability of our technique.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Aspects of Computing 6(5), 512–535 (1994)CrossRefMATHGoogle Scholar
  2. 2.
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  3. 3.
    Katoen, J.P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins and outs of the probabilistic model checker MRMC. Performance Evaluation 68(2), 90–104 (2011)CrossRefGoogle Scholar
  4. 4.
    Ábrahám, E., Becker, B., Dehnert, C., Jansen, N., Katoen, J.-P., Wimmer, R.: Counterexample generation for discrete-time markov models: an introductory survey. In: Bernardo, M., Damiani, F., Hähnle, R., Johnsen, E.B., Schaefer, I. (eds.) SFM 2014. LNCS, vol. 8483, pp. 65–121. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  5. 5.
    Bartocci, E., Grosu, R., Katsaros, P., Ramakrishnan, C.R., Smolka, S.A.: Model repair for probabilistic systems. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 326–340. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  6. 6.
    Hahn, E.M., Hermanns, H., Zhang, L.: Probabilistic reachability for parametric Markov models. Software Tools for Technology Transfer 13(1), 3–19 (2010)CrossRefGoogle Scholar
  7. 7.
    Jansen, N., Corzilius, F., Volk, M., Wimmer, R., Ábrahám, E., Katoen, J.-P., Becker, B.: Accelerating parametric probabilistic verification. In: Norman, G., Sanders, W. (eds.) QEST 2014. LNCS, vol. 8657, pp. 404–420. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  8. 8.
    Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: \(\sf PARAM\): a model checker for parametric markov models. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 660–664. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  9. 9.
    Bradley, S., Hax, A., Magnanti, T.: Applied Mathematical Programming. Addison-Wesley Pub. Co. (1977)Google Scholar
  10. 10.
    Biegler, L.T., Zavala, V.M.: Large-scale nonlinear programming using IPOPT: An integrating framework for enterprise-wide dynamic optimization. Computers & Chemical Engineering 33(3), 575–582 (2009)CrossRefGoogle Scholar
  11. 11.
    Chen, T., Hahn, E.M., Han, T., Kwiatkowska, M., Qu, H., Zhang, L.: Model repair for markov decision processes. In: Proc. of TASE, pp. 85–92. IEEE (2013)Google Scholar
  12. 12.
    Bartocci, E., Bortolussi, L., Nenzi, L., Sanguinetti, G.: On the robustness of temporal properties for stochastic models. In: Proc. of HSB 2013. EPTCS, vol. 125, pp. 3–19 (2013)Google Scholar
  13. 13.
    Chatzieleftheriou, G., Bonakdarpour, B., Smolka, S.A., Katsaros, P.: Abstract model repair. In: Goodloe, A.E., Person, S. (eds.) NFM 2012. LNCS, vol. 7226, pp. 341–355. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  14. 14.
    Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 339–354. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  15. 15.
    Sutton, R., Barto, A.: Reinforcement Learning - An Introduction. MIT Press (1998)Google Scholar
  16. 16.
    Sokolova, A., de Vink, E.P.: Probabilistic automata: system types, parallel composition and comparison. In: Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P., Siegle, M. (eds.) Validation of Stochastic Systems. LNCS, vol. 2925, pp. 1–43. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  17. 17.
    Daws, C.: Symbolic and parametric model checking of discrete-time markov chains. In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 280–294. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  18. 18.
    de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  19. 19.
    Reiter, M.K., Rubin, A.D.: Crowds: Anonymity for web transactions. ACM Trans. on Information and System Security 1(1), 66–92 (1998)CrossRefGoogle Scholar
  20. 20.
    Han, J., Jonker, P.: A system architecture solution for unreliable nanoelectronic devices. IEEE Transactions on Nanotechnology 1, 201–208 (2002)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Shashank Pathak
    • 1
  • Erika Ábrahám
    • 2
  • Nils Jansen
    • 2
  • Armando Tacchella
    • 1
  • Joost-Pieter Katoen
    • 2
  1. 1.University of GenovaGenovaItaly
  2. 2.RWTH Aachen UniversityAachenGermany

Personalised recommendations