Advertisement

Adjacency Variables Formulation for the Minimum Linear Arrangement Problem

  • Serigne GueyeEmail author
  • Sophie Michel
  • Mahdi Moeini
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 509)

Abstract

We present a new integer linear formulation using \(O(n^2)\) variables, called adjacency variables, to solve the Minimum Linear Arrangement problem (MinLA). We give a couple of valid equalities and inequalities for this formulation, some of them deriving from on a new general partitioning approach that is not limited to our formulation. We numerically tested the lower bound provided by the linear relaxation using instances of the matrix market library. Our results are compare with the best known lower bounds, in terms of quality, as well computing times.

Keywords

Minimum linear arrangement problem Integer programming Graph partitioning Cutting plane algorithms 

Notes

Acknowledgements

This work was financially supported by the region of Haute- Normandie (France) and the European Union. This support is gratefully acknowledged.

References

  1. 1.
    Amaral, A.: A new lower bound for the single row facility layout problem. Discrete App. Math. 157, 183–190 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Amaral, A., Caprara, A., Letchford, A., Gonzalez, J.: A new lower bound for the minimum linear arrangement of a graph. Electron. Notes Discrete Math. 30, 87–92 (2008)CrossRefGoogle Scholar
  3. 3.
    Mouawad, A.E., Nishimura, N., Raman, V., Simjour, N., Suzuki, A.: On the parameterized complexity of reconfiguration problems. In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 281–294. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  4. 4.
    Caprara, A., Gonzalez, J.: Laying out sparse graphs with provably minimum bandwidth. INFORMS J. Comput. 17(3), 356–373 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Caprara, A., Letchford, A., Gonzalez, J.: Decorous lower bounds for minimum linear arrangement. INFORMS J. Comput. 23 (2010)Google Scholar
  6. 6.
    Caprara, A., Oswald, M., Reinelt, G., Schwarz, R., Traversi, E.: Optimal linear arrangements using betweeness variables. Math Program. Comput. 3, 261–280 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Deza, M., Laurent, M.: Geometry of cuts and metrics. In: Algorithms and Combinatorics, vol. 15. Springer, Heidelberg (1997)Google Scholar
  8. 8.
    Garey, M., Johnson, D., Stockmeyer, L.: Some simplified np-complete graph problems. Theoret. Comput. Sci. 1, 237–267 (1976)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Gueye, S., Michel, S., Yassine, A.: A 0–1 linear programming formulation for the berth assignment problem. In: IEEE LOGISTIQUA 2011, pp. 50–54 (2011)Google Scholar
  10. 10.
    Harper, L.H.: Optimal assignment of numbers to vertices. J. SIAM 12, 131–135 (1961)MathSciNetGoogle Scholar
  11. 11.
    Hendrickson, B., Leland, R.: The chaco user’s guide, version 2.0. Technical report. SAND95-2344, Sandia National Laboratories (1995)Google Scholar
  12. 12.
    Horton, S.: The optimal linear arrangement problem: algorithms and approximation. Ph.D. Thesis, Georgia Institute of Technology (1997)Google Scholar
  13. 13.
    Hungerlaender, P., Rendl, F.: A computational study and survey of methods for the single-row facility layout problem. Technical report (2012)Google Scholar
  14. 14.
    Koopmans, T.C., Beckmann, M.J.: Assignment problems and the location of economic activities. Econometrica 25, 53–76 (1957)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Lisser, A., Rendl, F.: Graph partitioning using linear and semidefinite programming. Math. Program., Ser. B 95, 91–101 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Liu, W., Vanelli, A.: Generating lower bounds for the linear arrangement problem. Discrete Appl. Math. 59, 137–151 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Petit, J.: Experiments on the minimum linear arrangement problem. Technical report (1999)Google Scholar
  18. 18.
    Schwarz, R.: A branch-and-cut algorithm with betweenness variables for the Linear arrangement problem. Ph.D. Thesis, Universitaet Heidelberg (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Laboratoire d’Informatique d’Avignon (LIA)Avignon Cedex 9France
  2. 2.Laboratoire de Mathmatiques Appliques du Havre (LMAH)Le Havre CedexFrance
  3. 3.Centre de Recherche en Informatique de Lens (CRIL)Lens CedexFrance
  4. 4.Chair of Business Information Systems and Operations Research (BISOR)Technical University of KaiserslauternKaiserslauternGermany

Personalised recommendations