Advertisement

Metric Pseudoentropy: Characterizations, Transformations and Applications

  • Maciej SkorskiEmail author
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9063)

Abstract

Metric entropy is a computational variant of entropy, often used as a convenient substitute of HILL Entropy which is the standard notion of entropy in many cryptographic applications, like leakage-resilient cryptography, deterministic encryption or memory delegation. In this paper we develop a general method to characterize metric-type computational variants of entropy, in a way depending only on properties of a chosen class of test functions (adversaries). As a consequence, we obtain a nice and elegant geometric interpretation of metric entropy. We apply these characterizations to simplify and modularize proofs of some important results, in particular: (a) computational dense model theorem (FOCS’08), (b) a variant of the Leftover Hash Lemma with improvements for square-friendly applications (CRYPTO’11) and (c) equivalence between unpredictability entropy and HILL entropy over small domains (STOC’12). We also give a new tight transformation between HILL and metric pseudoentropy, which implies the dense model theorem with best possible parameters.

Keywords

Side Information Linear Threshold Cryptographic Application Fuzzy Extractor Deterministic Circuit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BDK+11]
    Barak, B., Dodis, Y., Krawczyk, H., Pereira, O., Pietrzak, K., Standaert, F.-X., Yu, Y.: Leftover hash lemma, revisited. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 1–20. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. [BSW03]
    Barak, B., Shaltiel, R., Wigderson, A.: Computational analogues of entropy. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.) RANDOM 2003 and APPROX 2003. LNCS, vol. 2764, pp. 200–215. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. [BV04]
    Boyd, S., Vandenberghe, L.: Convex optimization. Cambridge University Press, New York (2004)CrossRefzbMATHGoogle Scholar
  4. [CKLR11]
    Chung, K.-M., Kalai, Y.T., Liu, F.-H., Raz, R.: Memory delegation. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 151–168. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. [DDGS97]
    Donahue, M.J., Darken, C., Gurvits, L., Sontag, E.: Rates of convex approximation in non-hilbert spaces. Constructive Approximation 13(2), 187–220 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  6. [DORS08]
    Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  7. [DP08]
    Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: FOCS 2008, pp. 293–302. IEEE Computer Society (2008)Google Scholar
  8. [FOR12]
    Fuller, B., O’Neill, A., Reyzin, L.: A unified approach to deterministic encryption: New constructions and a connection to computational entropy. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 582–599. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. [Gow08]
    Gowers, W.T.: Decompositions, approximate structure, transference, and the Hahn-Banach theorem, ArXiv e-prints (2008)Google Scholar
  10. [GW11a]
    Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all falsifiable assumptions. In: STOC 2011, pp. 99–108. ACM (2011)Google Scholar
  11. [GW11b]
    Gowers, W.T., Wolf, J.: Linear forms and higher-degree uniformity for functions on \(\mathbb{F}^{n}_{p}\). Geometric and Functional Analysis 21(1), 36–69 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  12. [HILL99]
    Hastad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  13. [HLR07]
    Hsiao, C.-Y., Lu, C.-J., Reyzin, L.: Conditional computational entropy, or toward separating pseudoentropy from compressibility. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 169–186. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. [HRV10]
    Haitner, I., Reingold, O., Vadhan, S.: Efficiency improvements in constructing pseudorandom generators from one-way functions. In: STOC 2010, pp. 437–446. ACM (2010)Google Scholar
  15. [KPW13]
    Krenn, S., Pietrzak, K., Wadia, A.: A counterexample to the chain rule for conditional hill entropy. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 23–39. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. [Mor11]
    Mortici, C.: Journal of Mathematical Inequalities 5(4), 611–614 (2011)Google Scholar
  17. [MPRV]
    Mironov, I., Pandey, O., Reingold, O., Vadhan, S.: Computational differential privacy. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 126–142. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. [Rey11]
    Reyzin, L.: Some notions of entropy for cryptography. In: Fehr, S. (ed.) ICITS 2011. LNCS, vol. 6673, pp. 138–142. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  19. [RTS00]
    Radhakrishnan, J., Ta-Shma, A.: Bounds for dispersers, extractors, and depth-two superconcentrators. SIAM Journal on Discrete Mathematics 13 2000 (2000)Google Scholar
  20. [RTTV]
    Reingold, O., Trevisan, L., Tulsiani, M., Vadhan, S.: Dense subsets of pseudorandom sets. In: FOCS 2008, pp. 76–85. IEEE Computer Society (2008)Google Scholar
  21. [Sha48]
    Shannon, C.E.: A mathematical theory of communication. Bell System Technical Journal 27 (1948)Google Scholar
  22. [Tre11]
    Trevisan, L.: Dense model theorems and their applications. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 55–57. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  23. [TZ08]
    Tao, T., Ziegler, T.: The primes contain arbitrarily long polynomial progressions. Acta Mathematica 201(2), 213–305 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  24. [VZ12]
    Vadhan, S., Zheng, C.J.: Characterizing pseudoentropy and simplifying pseudorandom generator constructions. In: STOC 2012, pp. 817–836. ACM (2012)Google Scholar
  25. [Zha11]
    Zhang, J.: On the query complexity for showing dense model. Electronic Colloquium on Computational Complexity (ECCC) 18, 38 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Cryptology and Data Security GroupUniversity of WarsawWarsawPoland

Personalised recommendations