Advertisement

Generalizing Efficient Multiparty Computation

  • Bernardo M. DavidEmail author
  • Ryo Nishimaki
  • Samuel Ranellucci
  • Alain Tapp
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9063)

Abstract

We focus on generalizing constructions of Batch Single- Choice Cut-And-Choose Oblivious Transfer and Multi-sender k-out-of-n Oblivious Transfer, which are at the core of efficient secure computation constructions proposed by Lindell et al. and the IPS compiler. Our approach consists in showing that such primitives can be based on a much weaker and simpler primitive called Verifiable Oblivious Transfer (VOT) with low overhead. As an intermediate step we construct Generalized Oblivious Transfer from VOT. Finally, we show that Verifiable Oblivious Transfer can be obtained from a structure preserving oblivious transfer protocol (SPOT) through an efficient transformation that uses Groth-Sahai proofs and structure preserving commitments.

Keywords

Secret Sharing Access Structure Secret Sharing Scheme Commitment Scheme Oblivious Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AFG+10]
    Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-preserving signatures and commitments to group elements. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. [AGHO11]
    Abe, M., et al.: Optimal structure-preserving signatures in asymmetric bilinear groups. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 649–666. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. [BCKL08]
    Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: P-signatures and noninteractive anonymous credentials. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 356–374. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. [Can01]
    Canetti, R.: Universally composable security: A new paradigm for cryptograpic protocols. In: FOCS 2001 (2001), Current Full Version Available at Cryptology ePrint Archive, Report 2000/067 (2001)Google Scholar
  5. [CC00]
    Cachin, C., Camenisch, J.L.: Optimistic fair secure computation. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 93–111. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. [CF01]
    Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. [CHK+11]
    Camenisch, J., et al.: Structure preserving CCA secure encryption and applications. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 89–106. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. [CKWZ13]
    Choi, S.G., Katz, J., Wee, H., Zhou, H.-S.: Efficient, adaptively secure, and composable oblivious transfer with a single, global CRS. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 73–88. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. [CS97]
    Camenisch, J.L., Stadler, M.A.: Efficient group signature schemes for large groups (extended abstract). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  10. [CvdGT95]
    Crépeau, C., van de Graaf, J., Tapp, A.: Committed oblivious transfer and private multi-party computation. In: Coppersmith, D. (ed.) Advances in Cryptology - CRYPT0 1995. LNCS, vol. 963, pp. 110–123. Springer, Heidelberg (1995)Google Scholar
  11. [DHLW10]
    Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Cryptography against continuous memory attacks. In: FOCS, pp. 511–520. IEEE Computer Society (2010)Google Scholar
  12. [EGL85]
    Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts. Communications of the ACM 28(6), 637–647 (1985)CrossRefMathSciNetGoogle Scholar
  13. [GH08]
    Green, M., Hohenberger, S.: Universally composable adaptive oblivious transfer. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 179–197. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. [GMW87]
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: STOC 1987, pp. 218–229. ACM (1987)Google Scholar
  15. [GS08]
    Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. [GSW10]
    Ghadafi, E., Smart, N.P., Warinschi, B.: Groth-Sahai proofs revisited. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 177–192. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. [IK97]
    Ishai, Y., Kushilevitz, E.: Private simultaneous messages protocols with applications. In: Proceedings of the Fifth Israeli Symposium on Theory of Computing and Systems 1997, pp. 174–183. IEEE (1997)Google Scholar
  18. [IPS08]
    Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer - efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. [JS07]
    Jarecki, S.: Efficient two-party secure computation on committed inputs. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 97–114. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. [Kil88]
    Kilian, J.: Founding crytpography on oblivious transfer. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, pp. 20–31. ACM (1988)Google Scholar
  21. [KSV07]
    Kiraz, M.S., Schoenmakers, B., Villegas, J.: Efficient committed oblivious transfer of bit strings. In: Garay, J.A., Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC 2007. LNCS, vol. 4779, pp. 130–144. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  22. [Lin13]
    Lindell, Y.: Fast cut-and-choose based protocols for malicious and covert adversaries. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 1–17. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  23. [LOP11]
    Lindell, Y., Oxman, E., Pinkas, B.: The IPS compiler: Optimizations, variants and concrete efficiency. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 259–276. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  24. [LP11]
    Lindell, Y., Pinkas, B.: Secure two-party computation via cut-and-choose oblivious transfer. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 329–346. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  25. [LP12]
    Lindell, Y., Pinkas, B.: Secure two-party computation via cut-and-choose oblivious transfer. J. Cryptology 25(4), 680–722 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  26. [PVW08]
    Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  27. [Rab81]
    Rabin, M.O.: How to exchange secrets by oblivious transfer. Technical report, Aiken Compuation Laboratory, Harvard University, TR-81 (1981)Google Scholar
  28. [SSR08]
    Shankar, B., Srinathan, K., Rangan, C.P.: Alternative protocols for generalized oblivious transfer. In: Rao, S., Chatterjee, M., Jayanti, P., Murthy, C.S.R., Saha, S.K. (eds.) ICDCN 2008. LNCS, vol. 4904, pp. 304–309. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  29. [Tas11]
    Tassa, T.: Generalized oblivious transfer by secret sharing. Designs, Codes and Cryptography 58(1), 11–21 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  30. [Yao86]
    Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: FOCS 1986, pp. 162–167. IEEE (1986)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Bernardo M. David
    • 1
    Email author
  • Ryo Nishimaki
    • 2
  • Samuel Ranellucci
    • 1
  • Alain Tapp
    • 3
  1. 1.Department of Computer ScienceAarhus UniversityAarhusDenmark
  2. 2.Secure Platform LaboratoriesNTTchiyoda-kuJapan
  3. 3.DIROUniversité de MontréalMontréalCanada

Personalised recommendations