Advertisement

Management of Complicated Vitreoretinal Cases in Children

  • Eric Nudleman
  • Antonio CaponeJr.Email author

Abstract

Pediatric vitreoretinopathies pose unique challenges to the retinal surgeon because of the distinct anatomic and physiological differences from adult retinal diseases. The pars plana, through which the vitreoretinal instrumentation may be safely introduced, is not fully formed until approximately the age of 8 or 9 months, thereby necessitating entry through the pars plicata when a posterior approach is desired in the newborn eye [17]. The vitreous gel, which is well formed and firm in normal newborn eyes, may be optically empty or abnormally syneretic in various pediatric diseases. The vitreoretinal adhesion is stronger in children than in adults, making the surgical induction of posterior vitreous detachment relatively difficult [19, 44]. The biochemistry of the newborn eye is influx, with rising and falling levels of vascular endothelial growth factor (VEGF), insulin-like growth factor 1, tumor growth factor-b, and other cytokines, which may affect the progression or stabilization of pediatric vitreoretinopathies [10, 47, 54]. To operate safely, the pediatric vitreoretinal surgeon must understand the characteristics that define diseases, such as retinopathy of prematurity (ROP), familial exudative vitreoretinopathy (FEVR), persistent fetal vasculature syndrome (PFVS), congenital x-linked retinoschisis (CXLRS), and Coats disease. Here we discuss key features of the surgical approach to complicated pediatric vitreoretinopathies.

Keywords

Retinal Detachment Fluorescein Angiography Posterior Vitreous Detachment Stickler Syndrome Avascular Retina 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Adams G, et al. Update from the ophthalmology child abuse working party: Royal College ophthalmologists. Eye. 2004;18(8):795–8. doi:  10.1038/sj.eye.6701643
  2. 2.
    Ang A, et al. Retinal detachment and prophylaxis in type 1 Stickler syndrome. Ophthalmology. 2008;115(1):164–8.CrossRefPubMedGoogle Scholar
  3. 3.
    Azzolini C, et al. Intrasurgical plasmin enzyme in diabetic macular edema. Am J Ophthalmol. 2004;138(4):560–6.CrossRefPubMedGoogle Scholar
  4. 4.
    Bhende P, et al. Functional and anatomical outcomes after primary lens-sparing pars plana vitrectomy for stage 4 retinopathy of prematurity. Indian J Ophthalmol. 2009;57(4):267–71.CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Canny CL, Oliver GL. Fluorescein angiographic findings in familial exudative vitreoretinopathy. Arch Ophthalmol. 1976;94(7):1114–20.CrossRefPubMedGoogle Scholar
  6. 6.
    Capone A, Trese MT. Lens-sparing vitreous surgery for tractional stage 4A retinopathy of prematurity retinal detachments. Ophthalmology. 2001;108(11):2068–70.CrossRefPubMedGoogle Scholar
  7. 7.
    Carroll C, et al. The clinical effectiveness and safety of prophylactic retinal interventions to reduce the risk of retinal detachment and subsequent vision loss in adults and children with Stickler syndrome: a systematic review. Health Technol Assess (Winchester, Engl. 2011;15(16):iii–xiv– 1–62.Google Scholar
  8. 8.
    Choi J, et al. Long-term results of lens-sparing vitrectomy for stages 4B and 5 retinopathy of prematurity. Korean J Ophthalmol: KJO. 2011;25(5):305–10.CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Cusick M, et al. Anatomical and visual results of vitreoretinal surgery for stage 5 retinopathy of prematurity. Retina (Phila Pa). 2006;26(7):729–35.CrossRefGoogle Scholar
  10. 10.
    Drenser KA. Anti-angiogenic therapy in the management of retinopathy of prematurity. Dev Ophthalmol. 2009;44:89–97.CrossRefPubMedGoogle Scholar
  11. 11.
    Eller AW, et al. Retinopathy of prematurity. The association of a persistent hyaloid artery. Ophthalmology. 1987;94(4):444–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Gandorfer A. Objective of pharmacologic vitreolysis. Dev Ophthalmol. 2009;44:1–6.CrossRefPubMedGoogle Scholar
  13. 13.
    Goldenberg DT, et al. Nonaccidental trauma and peripheral retinal nonperfusion. Ophthalmology. 2010;117(3):561–6.CrossRefPubMedGoogle Scholar
  14. 14.
    Good WV, Early Treatment for Retinopathy of Prematurity Cooperative Group. The early treatment for retinopathy of prematurity study: structural findings at age 2 years. Br J Ophthalmol. 2006;90(11):1378–82.CrossRefPubMedGoogle Scholar
  15. 15.
    Gopal L, et al. Surgery for stage 5 retinopathy of prematurity: the learning curve and evolving technique. Indian J Ophthalmol. 2000;48(2):101–6.PubMedGoogle Scholar
  16. 16.
    Haddad R, Font RL, Reeser F. Persistent hyperplastic primary vitreous. A clinicopathologic study of 62 cases and review of the literature. Surv Ophthalmol. 1978;23(2):123–34.CrossRefPubMedGoogle Scholar
  17. 17.
    Hairston RJ, et al. Morphometric analysis of pars plana development in humans. Retina (Phila Pa). 1997;17(2):135–8.CrossRefGoogle Scholar
  18. 18.
    Hartnett ME. Features associated with surgical outcome in patients with stages 4 and 5 retinop-athy of prematurity. Retina (Phila Pa). 2003;23(3):322–9.Google Scholar
  19. 19.
    Hartnett ME. Pediatric retina. Philadelphia, USA: Lippincott Williams & Wilkins; 2005.Google Scholar
  20. 20.
    Ho LY, et al. Ab interno incision for pediatric vitreoretinal surgery. Retina (Phila Pa). 2010;30(9):1542–3.CrossRefGoogle Scholar
  21. 21.
    Hubbard GB, Cherwick DH, Burian G. Lens-sparing vitrectomy for stage 4 retinopathy of prematurity. Ophthalmology. 2004;111(12):2274–7.CrossRefPubMedGoogle Scholar
  22. 22.
    International Committee for the Classification of Retinopathy of Prematurity. The international classification of retinopathy of prematurity revisited. Arch Ophthalmol. 2005;123(7):991–9. doi:  10.1001/archopht.123.7.991
  23. 23.
    Joshi MM, et al. Posterior hyaloid contracture in pediatric vitreoretinopathies. Retina (Phila Pa). 2006;26(7 Suppl):S38–41.CrossRefGoogle Scholar
  24. 24.
    Kashani AH, et al. High prevalence of peripheral retinal vascular anomalies in family members of patients with familial exudative vitreoretinopathy. Ophthalmology. 2014;121(1):262–8.CrossRefPubMedGoogle Scholar
  25. 25.
    Kohno T, et al. Immunofluorescent studies of fibronectin and laminin in the human eye. Invest Ophthalmol Vis Sci. 1987;28(3):506–14.PubMedGoogle Scholar
  26. 26.
    Lakhanpal RR, et al. Anatomic success rate after 3-port lens-sparing vitrectomy in stage 4A or 4B retinopathy of prematurity. Ophthalmology. 2005;112(9):1569–73.CrossRefPubMedGoogle Scholar
  27. 27.
    Lakhanpal RR, Fortun JA, et al. Lensectomy and vitrectomy with and without intravitreal triamcinolone acetonide for vascularly active stage 5 retinal detachments in retinopathy of prematurity. Retina (Phila Pa). 2006;26(7):736–40.CrossRefGoogle Scholar
  28. 28.
    Lakhanpal RR, Sun RL, et al. Visual outcomes after 3-port lens-sparing vitrectomy in stage 4 retinopathy of prematurity. Arch Ophthalmol. 2006;124(5):675–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Leiba H, Oliver M, Pollack A. Prophylactic laser photocoagulation in Stickler syndrome. Eye (Lond, Engl). 1996;10(Pt 6):701–8.CrossRefGoogle Scholar
  30. 30.
    Liotta LA, et al. Effect of plasminogen activator (urokinase), plasmin, and thrombin on glycoprotein and collagenous components of basement membrane. Cancer Res. 1981;41(11 Pt 1):4629–36.PubMedGoogle Scholar
  31. 31.
    Maguire AM, Trese MT. Lens-sparing vitreoretinal surgery in infants. Arch Ophthalmol. 1992;110(2):284–6.CrossRefPubMedGoogle Scholar
  32. 32.
    Matthews GP, Das A. Dense vitreous hemorrhages predict poor visual and neurological prognosis in infants with shaken baby syndrome. J Pediatr Ophthalmol Strabismus. 1996;33(4):260–5.PubMedGoogle Scholar
  33. 33.
    Mintz-Hittner HA, O’Malley RE, Kretzer FL. Long-term form identification vision after early, closed, lensectomy-vitrectomy for stage 5 retinopathy of prematurity. Ophthalmology. 1997;104(3):454–9.CrossRefPubMedGoogle Scholar
  34. 34.
    Moshfeghi AA, et al. Excellent visual outcome and reversal of dragging after lens sparing vitrectomy for progressive tractional stage 4a retinopathy of prematurity retinal detachment. Retina (Phila Pa). 2004;24(4):615–6.CrossRefGoogle Scholar
  35. 35.
    Mulvihill A, Lanigan B, O’Keefe M. Bilateral serous retinal detachments following diode laser treatment for retinopathy of prematurity. Arch Ophthalmol. 2003;121(1):129–30.CrossRefPubMedGoogle Scholar
  36. 36.
    Noonan CP, Clark DI. Acute serous detachment with argon laser photocoagulation in retinopathy of prematurity. J AAPOS: Off Publ Am Assoc Pediatr Ophthalmol Strabismus/Am Assoc Pediatr Ophthalmol Strabismus. 1997;1(3):183–4.CrossRefGoogle Scholar
  37. 37.
    Palmer EA, et al. Incidence and early course of retinopathy of prematurity. The cryotherapy for retinopathy of prematurity cooperative group. Ophthalmology. 1991;98(11):1628–40.CrossRefPubMedGoogle Scholar
  38. 38.
    Pendergast SD, Trese MT. Familial exudative vitreoretinopathy. Results of surgical management. Ophthalmology. 1998;105(6):1015–23.CrossRefPubMedGoogle Scholar
  39. 39.
    Prenner JL, Capone A, Trese MT. Visual outcomes after lens-sparing vitrectomy for stage 4A retinopathy of prematurity. Ophthalmology. 2004;111(12):2271–3.CrossRefPubMedGoogle Scholar
  40. 40.
    Ranchod TM, et al. Clinical presentation of familial exudative vitreoretinopathy. Ophthalmology. 2011;118(10):2070–5.CrossRefPubMedGoogle Scholar
  41. 41.
    El Rayes EN, Vinekar A, Capone A. Three-year anatomic and visual outcomes after vitrectomy for stage 4B retinopathy of prematurity. Retina (Phila Pa). 2008;28(4):568–72.CrossRefGoogle Scholar
  42. 42.
    Repka MX, et al. Outcome of eyes developing retinal detachment during the Early Treatment for Retinopathy of Prematurity Study (ETROP). Arch Ophthalmol. 2006;124(1):24–30.CrossRefPubMedGoogle Scholar
  43. 43.
    Schaffer DB, et al. Prognostic factors in the natural course of retinopathy of prematurity. The cryotherapy for Retinopathy of Prematurity Cooperative Group. Ophthalmology. 1993;100(2):230–7.CrossRefPubMedGoogle Scholar
  44. 44.
    Sebag J. Age-related differences in the human vitreoretinal interface. Arch Ophthalmol. 1991;109(7):966–71.CrossRefPubMedGoogle Scholar
  45. 45.
    Shaikh S, Trese MT. Lens-sparing vitrectomy in predominantly posterior persistent fetal vasculature syndrome in eyes with nonaxial lens opacification. Retina (Phila Pa). 2003;23(3):330–4.CrossRefGoogle Scholar
  46. 46.
    Singh R, et al. Long-term visual outcomes following lens-sparing vitrectomy for retinopathy of prematurity. Br J Ophthalmol. 2012;96(11):1395–8.CrossRefPubMedGoogle Scholar
  47. 47.
    Sonmez K, et al. Vitreous levels of stromal cell-derived factor 1 and vascular endothelial growth factor in patients with retinopathy of prematurity. Ophthalmology. 2008;115(6):1065–1070.e1.CrossRefPubMedGoogle Scholar
  48. 48.
    Stalmans P, et al. Enzymatic vitreolysis with ocriplasmin for vitreomacular traction and macular holes. N Engl J Med. 2012;367(7):606–15.CrossRefPubMedGoogle Scholar
  49. 49.
    Trese MT. Surgical results of stage V retrolental fibroplasia and timing of surgical repair. Ophthalmology. 1984;91(5):461–6.CrossRefPubMedGoogle Scholar
  50. 50.
    Trese MT. Visual results and prognostic factors for vision following surgery for stage V retinopathy of prematurity. Ophthalmology. 1986;93(5):574–9.CrossRefPubMedGoogle Scholar
  51. 51.
    Trese MT, Droste PJ. Long-term postoperative results of a consecutive series of stages 4 and 5 retinopathy of prematurity. Ophthalmology. 1998;105(6):992–7.CrossRefPubMedGoogle Scholar
  52. 52.
    Uemura A, et al. Effect of plasmin on laminin and fibronectin during plasmin-assisted vitrectomy. Arch Ophthalmol. 2005;123(2):209–13.CrossRefPubMedGoogle Scholar
  53. 53.
    Vukmer GJ, Brod RD. Presumed exudative retinal detachment after cryotherapy in retinopathy of prematurity. Ann Ophthalmol. 1992;24(5):175–6.PubMedGoogle Scholar
  54. 54.
    Wilkinson-Berka JL, et al. Inhibition of platelet-derived growth factor promotes pericyte loss and angiogenesis in ischemic retinopathy. Am J Pathol. 2004;164(4):1263–73.CrossRefPubMedCentralPubMedGoogle Scholar
  55. 55.
    Wong SC, Capone A. Microplasmin (ocriplasmin) in pediatric vitreoretinal surgery: update and review. Retina (Phila Pa). 2013;33(2):339–48.CrossRefGoogle Scholar
  56. 56.
    Yokoi T, et al. Vascular abnormalities in aggressive posterior retinopathy of prematurity detected by fluorescein angiography. Ophthalmology. 2009;116(7):1377–82.CrossRefPubMedGoogle Scholar
  57. 57.
    Young TL, et al. Histopathology and vascular endothelial growth factor in untreated and diode laser-treated retinopathy of prematurity. J AAPOS: Off Publ Am Assoc Pediatr Ophthalmol Strabismus/Am Assoc Pediatr Ophthalmol Strabismus. 1997;1(2):105–10.CrossRefGoogle Scholar
  58. 58.
    Yu YS, et al. Lens-sparing vitrectomy for stage 4 and stage 5 retinopathy of prematurity. Korean J Ophthalmol: KJO. 2006;20(2):113–7.CrossRefPubMedCentralPubMedGoogle Scholar
  59. 59.
    Zhu M, et al. The human hyaloid system: cell death and vascular regression. Exp Eye Res. 2000;70(6):767–76.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of OphthalmologyShiley Eye Center and Jacobs Retina Center, University of CaliforniaSan DiegoUSA
  2. 2.Department of OphthalmologyOakland University William Beaumont School of Medicine, Associated Retinal ConsultantsRoyal OakUSA

Personalised recommendations