CNV and Structural Variation in Plants: Prospects of NGS Approaches

  • Enrico Francia
  • Nicola Pecchioni
  • Alberto Policriti
  • Simone Scalabrin

Abstract

Deletion, insertion, and duplications larger than 1 kb are structural variants (SVs) classified as copy number variants (CNVs). Beside single nucleotide variants (SNVs), CNVs are widespread in plants and substantially contribute to intra-species genetic variation. Most CNVs reported so far overlap with protein-coding sequences and result in gains or losses of gene copies that might directly influence transcript dosage. In several cases they proved to play an important role in the adaptive response of plants, by regulating development, and by increasing resistance to biotic and abiotic stresses. The advent of next-generation sequencing (NGS) is giving the possibility to uncover frequency and importance of CNVs. Although complexity of plant genomes and the short read length obtained from NGS platforms posed technical and computational challenges for their discovery, these are currently tackled with five strategies. New developments are expected, by third-generation NGS, the need for comprehensive databases, and the application in plant improvement.

Keywords

CNV Copy number variation Structural variation NGS Bioinformatics Paired-end method 

References

  1. Abel HJ, Duncavage EJ (2013) Detection of structural DNA variation from next generation sequencing data: a review of informatic approaches. Cancer Genet 206(12):432–440PubMedCentralPubMedCrossRefGoogle Scholar
  2. Alkan C, Coe BP, Eichler EE (2011) Genome structural variation discovery and genotyping. Nat Rev Genet 12(5):363–376PubMedCentralPubMedCrossRefGoogle Scholar
  3. Bailey JA, Kidd JM, Eichler EE (2008) Human copy number polymorphic genes. Cytogenet Genome Res 123(1–4):234–243PubMedCrossRefGoogle Scholar
  4. Beckmann JS, Estivill X, Antonarakis SE (2007) Copy number variants and genetic traits: closer to the resolution of phenotypic to genotypic variability. Nat Rev Genet 8(8):639–646PubMedCrossRefGoogle Scholar
  5. Beló A, Beatty MK, Hondred D, Fengler KA, Li B, Rafalski A (2010) Allelic genome structural variations in maize detected by array comparative genome hybridization. Theor Appl Genet 120(2):355–367PubMedCrossRefGoogle Scholar
  6. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG et al (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456(7218):53–59PubMedCentralPubMedCrossRefGoogle Scholar
  7. Bickhart DM, Hou Y, Schroeder SG, Alkan C, Cardone MF, Matukumalli LK et al (2012) Copy number variation of individual cattle genomes using next-generation sequencing. Genome Res 22(4):778–790PubMedCentralPubMedCrossRefGoogle Scholar
  8. Birchler JA (2012) Insights from paleogenomic and population studies into the consequences of dosage sensitive gene expression in plants. Curr Opin Plant Biol 15(5):544–548PubMedCrossRefGoogle Scholar
  9. Boyko A, Kovalchuk I (2011) Genetic and epigenetic effects of plant-pathogen interactions: an evolutionary perspective. Mol Plant 4(6):1014–1023PubMedCrossRefGoogle Scholar
  10. Campbell PJ, Stephens PJ, Pleasance ED, O’Meara S, Li H, Santarius T et al (2008) Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing. Nat Genet 40(6):722–729PubMedCentralPubMedCrossRefGoogle Scholar
  11. Cantsilieris S, White SJ (2013) Correlating multiallelic copy number polymorphisms with disease susceptibility. Hum Mutat 34(1):1–13PubMedCrossRefGoogle Scholar
  12. Cao J, Schneeberger K, Ossowski S, Günther T, Bender S, Fitz J et al (2011) Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nat Genet 43(10):956–963PubMedCrossRefGoogle Scholar
  13. Castonguay Y, Dubé M-P, Cloutier J, Bertrand A, Michaud R, Laberge S (2013) Molecular physiology and breeding at the crossroads of cold hardiness improvement. Physiol Plant 147(1):64–74PubMedCrossRefGoogle Scholar
  14. Causse M, Desplat N, Pascual L, Le Paslier M-C, Sauvage C, Bauchet G et al (2013) Whole genome resequencing in tomato reveals variation associated with introgression and breeding events. BMC Genomics 14:791PubMedCentralPubMedCrossRefGoogle Scholar
  15. Chaignat E, Yahya-Graison EA, Henrichsen CN, Chrast J, Schütz F, Pradervand S et al (2011) Copy number variation modifies expression time courses. Genome Res 21(1):106–113PubMedCentralPubMedCrossRefGoogle Scholar
  16. Chia J-M, Song C, Bradbury PJ, Costich D, de Leon N, Doebley J et al (2012) Maize HapMap2 identifies extant variation from a genome in flux. Nat Genet 44(7):803–807PubMedCrossRefGoogle Scholar
  17. Conrad DF, Pinto D, Redon R, Feuk L, Gokcumen O, Zhang Y et al (2010) Origins and functional impact of copy number variation in the human genome. Nature 464(7289):704–712PubMedCentralPubMedCrossRefGoogle Scholar
  18. Cook DE, Lee TG, Guo X, Melito S, Wang K, Bayless AM et al (2012) Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean. Science 338(6111):1206–1209PubMedCrossRefGoogle Scholar
  19. D’haene B, Vandesompele J, Hellemans J (2010) Accurate and objective copy number profiling using real-time quantitative PCR. Methods 50(4):262–270PubMedCrossRefGoogle Scholar
  20. Daines B, Wang H, Li Y, Han Y, Gibbs R, Chen R (2009) High-throughput multiplex sequencing to discover copy number variants in Drosophila. Genetics 182(4):935–941PubMedCentralPubMedCrossRefGoogle Scholar
  21. DeBolt S (2010) Copy number variation shapes genome diversity in Arabidopsis over immediate family generational scales. Genome Biol Evol 2:441–453PubMedCentralPubMedCrossRefGoogle Scholar
  22. Díaz A, Zikhali M, Turner AS, Isaac P, Laurie DA (2012) Copy number variation affecting the Photoperiod-B1 and Vernalization-A1 genes is associated with altered flowering time in wheat (Triticum aestivum). PLoS One 7(3):e33234PubMedCentralPubMedCrossRefGoogle Scholar
  23. Diskin SJ, Hou C, Glessner JT, Attiyeh EF, Laudenslager M, Bosse K et al (2009) Copy number variation at 1q21.1 associated with neuroblastoma. Nature 459(7249):987–991PubMedCentralPubMedCrossRefGoogle Scholar
  24. Dohm JC, Lottaz C, Borodina T, Himmelbauer H (2008) Substantial biases in ultra-short read data sets from high-throughput DNA sequencing. Nucleic Acids Res 36(16):e105PubMedCentralPubMedCrossRefGoogle Scholar
  25. Feuk L, Carson AR, Scherer SW (2006) Structural variation in the human genome. Nat Rev Genet 7(2):85–97PubMedCrossRefGoogle Scholar
  26. Fiston-Lavier A-S, Carrigan M, Petrov DA, González J (2011) T-lex: a program for fast and accurate assessment of transposable element presence using next-generation sequencing data. Nucleic Acids Res 39(6):e36PubMedCentralPubMedCrossRefGoogle Scholar
  27. Freeman JL, Perry GH, Feuk L, Redon R, McCarroll SA, Altshuler DM et al (2006) Copy number variation: new insights in genome diversity. Genome Res 16(8):949–961PubMedCrossRefGoogle Scholar
  28. Girirajan S, Campbell CD, Eichler EE (2011) Human copy number variation and complex genetic disease. Annu Rev Genet 45:203–226PubMedCrossRefGoogle Scholar
  29. Gnerre S, Maccallum I, Przybylski D, Ribeiro FJ, Burton JN, Walker BJ et al (2011) High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc Natl Acad Sci U S A 108(4):1513–1518PubMedCentralPubMedCrossRefGoogle Scholar
  30. Golzio C, Willer J, Talkowski ME, Oh EC, Taniguchi Y, Jacquemont S et al (2012) KCTD13 is a major driver of mirrored neuroanatomical phenotypes of the 16p11.2 copy number variant. Nature 485(7398):363–367PubMedCentralPubMedCrossRefGoogle Scholar
  31. Haber JE (2000) Partners and pathways repairing a double-strand break. Trends Genet 16(6):259–264PubMedCrossRefGoogle Scholar
  32. Hastings PJ, Lupski JR, Rosenberg SM, Ira G (2009a) Mechanisms of change in gene copy number. Nat Rev Genet 10(8):551–564PubMedCentralPubMedCrossRefGoogle Scholar
  33. Hastings PJ, Ira G, Lupski JR (2009b) A microhomology-mediated break-induced replication model for the origin of human copy number variation. PLoS Genet 5(1):e1000327PubMedCentralPubMedCrossRefGoogle Scholar
  34. Haun WJ, Hyten DL, Xu WW, Gerhardt DJ, Albert TJ, Richmond T et al (2011) The composition and origins of genomic variation among individuals of the soybean reference cultivar Williams 82. Plant Physiol 155(2):645–655PubMedCentralPubMedCrossRefGoogle Scholar
  35. Henrichsen CN, Vinckenbosch N, Zöllner S, Chaignat E, Pradervand S, Schütz F et al (2009) Segmental copy number variation shapes tissue transcriptomes. Nat Genet 41(4):424–429PubMedCrossRefGoogle Scholar
  36. Hiroi N, Takahashi T, Hishimoto A, Izumi T, Boku S, Hiramoto T (2013) Copy number variation at 22q11.2: from rare variants to common mechanisms of developmental neuropsychiatric disorders. Mol Psychiatry 18(11):1153–1165PubMedCrossRefGoogle Scholar
  37. Hormozdiari F, Alkan C, Eichler EE, Sahinalp SC (2009) Combinatorial algorithms for structural variation detection in high-throughput sequenced genomes. Genome Res 19(7):1270–1278PubMedCentralPubMedCrossRefGoogle Scholar
  38. Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y et al (2004) Detection of large-scale variation in the human genome. Nat Genet 36(9):949–951PubMedCrossRefGoogle Scholar
  39. Iqbal Z, Caccamo M, Turner I, Flicek P, McVean G (2012) De novo assembly and genotyping of variants using colored de Bruijn graphs. Nat Genet 44(2):226–232PubMedCentralPubMedCrossRefGoogle Scholar
  40. Jacquemont S, Reymond A, Zufferey F, Harewood L, Walters RG, Kutalik Z et al (2011) Mirror extreme BMI phenotypes associated with gene dosage at the chromosome 16p11.2 locus. Nature 478(7367):97–102PubMedCentralPubMedCrossRefGoogle Scholar
  41. Jiao Y, Zhao H, Ren L, Song W, Zeng B, Guo J et al (2012) Genome-wide genetic changes during modern breeding of maize. Nat Genet 44(7):812–815PubMedCrossRefGoogle Scholar
  42. Kellogg EA, Bennetzen JL (2004) The evolution of nuclear genome structure in seed plants. Am J Bot 91(10):1709–1725PubMedCrossRefGoogle Scholar
  43. Kidd JM, Cooper GM, Donahue WF, Hayden HS, Sampas N, Graves T et al (2008) Mapping and sequencing of structural variation from eight human genomes. Nature 453(7191):56–64PubMedCentralPubMedCrossRefGoogle Scholar
  44. Knox AK, Dhillon T, Cheng H, Tondelli A, Pecchioni N, Stockinger EJ (2010) CBF gene copy number variation at Frost Resistance-2 is associated with levels of freezing tolerance in temperate-climate cereals. Theor Appl Genet 121(1):21–35PubMedCrossRefGoogle Scholar
  45. Kondrashov FA (2012) Gene duplication as a mechanism of genomic adaptation to a changing environment. Proc Biol Sci 279(1749):5048–5057PubMedCentralPubMedCrossRefGoogle Scholar
  46. Korbel JO, Urban AE, Affourtit JP, Godwin B, Grubert F, Simons JF et al (2007) Paired-end mapping reveals extensive structural variation in the human genome. Science 318(5849):420–426PubMedCentralPubMedCrossRefGoogle Scholar
  47. Korbel JO, Abyzov A, Mu XJ, Carriero N, Cayting P, Zhang Z et al (2009) PEMer: a computational framework with simulation-based error models for inferring genomic structural variants from massive paired-end sequencing data. Genome Biol 10(2):R23PubMedCentralPubMedCrossRefGoogle Scholar
  48. Lai J, Li R, Xu X, Jin W, Xu M, Zhao H et al (2010) Genome-wide patterns of genetic variation among elite maize inbred lines. Nat Genet 42(11):1027–1030PubMedCrossRefGoogle Scholar
  49. Laukaitis CM, Thompson P, Martinez ME, Gerner EW (2010) Identifying gene copy number variants associated with colorectal adenoma recurrence. Genome Biol 11(Suppl 1):24CrossRefGoogle Scholar
  50. Lee JA, Carvalho CMB, Lupski JR (2007) A DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders. Cell 131(7):1235–1247PubMedCrossRefGoogle Scholar
  51. Leggett RM, Ramirez-Gonzalez RH, Verweij W, Kawashima CG, Iqbal Z, Jones JDG et al (2013) Identifying and classifying trait linked polymorphisms in non-reference species by walking coloured de Bruijn graphs. PLoS One 8(3):e60058PubMedCentralPubMedCrossRefGoogle Scholar
  52. Li W, Olivier M (2013) Current analysis platforms and methods for detecting copy number variation. Physiol Genomics 45(1):1–16PubMedCentralPubMedCrossRefGoogle Scholar
  53. Lieberman-Lazarovich M, Levy AA (2011) Homologous recombination in plants: an antireview. Methods Mol Biol 701:51–65PubMedCrossRefGoogle Scholar
  54. Lower KM, Hughes JR, De Gobbi M, Henderson S, Viprakasit V, Fisher C et al (2009) Adventitious changes in long-range gene expression caused by polymorphic structural variation and promoter competition. Proc Natl Acad Sci U S A 106(51):21771–21776PubMedCentralPubMedCrossRefGoogle Scholar
  55. Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J et al (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1(1):18PubMedCentralPubMedCrossRefGoogle Scholar
  56. Lupski JR (2007) Genomic rearrangements and sporadic disease. Nat Genet 39(7 Suppl):S43–S47PubMedCrossRefGoogle Scholar
  57. Lupski JR, de Oca-Luna RM, Slaugenhaupt S, Pentao L, Guzzetta V, Trask BJ et al (1991) DNA duplication associated with Charcot-Marie-Tooth disease type 1A. Cell 66(2):219–232PubMedCrossRefGoogle Scholar
  58. Makino T, McLysaght A (2010) Ohnologs in the human genome are dosage balanced and frequently associated with disease. Proc Natl Acad Sci U S A 107(20):9270–9274PubMedCentralPubMedCrossRefGoogle Scholar
  59. Maron LG, Guimarães CT, Kirst M, Albert PS, Birchler JA, Bradbury PJ et al (2013) Aluminum tolerance in maize is associated with higher MATE1 gene copy number. Proc Natl Acad Sci U S A 110(13):5241–5246PubMedCentralPubMedCrossRefGoogle Scholar
  60. Marroni F, Pinosio S, Morgante M (2014) Structural variation and genome complexity: is dispensable really dispensable? Curr Opin Plant Biol 18C:31–36CrossRefGoogle Scholar
  61. McCarroll SA, Kuruvilla FG, Korn JM, Cawley S, Nemesh J, Wysoker A et al (2008) Integrated detection and population-genetic analysis of SNPs and copy number variation. Nat Genet 40(10):1166–1174PubMedCrossRefGoogle Scholar
  62. McHale LK, Haun WJ, Xu WW, Bhaskar PB, Anderson JE, Hyten DL et al (2012) Structural variants in the soybean genome localize to clusters of biotic stress-response genes. Plant Physiol 159(4):1295–1308PubMedCentralPubMedCrossRefGoogle Scholar
  63. Medvedev P, Stanciu M, Brudno M (2009) Computational methods for discovering structural variation with next-generation sequencing. Nat Methods 6(11 Suppl):S13–S20PubMedCrossRefGoogle Scholar
  64. Mills RE, Luttig CT, Larkins CE, Beauchamp A, Tsui C, Pittard WS et al (2006) An initial map of insertion and deletion (INDEL) variation in the human genome. Genome Res 16(9):1182–1190PubMedCentralPubMedCrossRefGoogle Scholar
  65. Mills RE, Walter K, Stewart C, Handsaker RE, Chen K, Alkan C et al (2011) Mapping copy number variation by population-scale genome sequencing. Nature 470(7332):59–65PubMedCentralPubMedCrossRefGoogle Scholar
  66. Morel M, Meux E, Mathieu Y, Thuillier A, Chibani K, Harvengt L et al (2013) Xenomic networks variability and adaptation traits in wood decaying fungi. Microb Biotechnol 6(3):248–263PubMedCentralPubMedCrossRefGoogle Scholar
  67. Muñoz-Amatriaín M, Eichten SR, Wicker T, Richmond TA, Mascher M, Steuernagel B et al (2013) Distribution, functional impact, and origin mechanisms of copy number variation in the barley genome. Genome Biol 14(6):R58PubMedCentralPubMedCrossRefGoogle Scholar
  68. Nitcher R, Distelfeld A, Tan C, Yan L, Dubcovsky J (2013) Increased copy number at the HvFT1 locus is associated with accelerated flowering time in barley. Mol Genet Genomics 288(5–6):261–275PubMedCentralPubMedCrossRefGoogle Scholar
  69. Oh D-H, Dassanayake M, Bohnert HJ, Cheeseman JM (2012) Life at the extreme: lessons from the genome. Genome Biol 13(3):241PubMedCentralPubMedCrossRefGoogle Scholar
  70. Pâques F, Haber JE (1999) Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63(2):349–404PubMedCentralPubMedGoogle Scholar
  71. Park H, Kim J-I, Ju YS, Gokcumen O, Mills RE, Kim S et al (2010) Discovery of common Asian copy number variants using integrated high-resolution array CGH and massively parallel DNA sequencing. Nat Genet 42(5):400–405PubMedCentralPubMedCrossRefGoogle Scholar
  72. Perry GH, Tchinda J, McGrath SD, Zhang J, Picker SR, Cáceres AM et al (2006) Hotspots for copy number variation in chimpanzees and humans. Proc Natl Acad Sci U S A 103(21):8006–8011PubMedCentralPubMedCrossRefGoogle Scholar
  73. Perry GH, Dominy NJ, Claw KG, Lee AS, Fiegler H, Redon R et al (2007) Diet and the evolution of human amylase gene copy number variation. Nat Genet 39(10):1256–1260PubMedCentralPubMedCrossRefGoogle Scholar
  74. Platzer A, Nizhynska V, Long Q (2012) TE-Locate: a tool to locate and group transposable element occurrences using paired-end next-generation sequencing data. Biology 1(2):395–410PubMedCentralPubMedCrossRefGoogle Scholar
  75. Puchta H (2005) The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution. J Exp Bot 56(409):1–14PubMedGoogle Scholar
  76. Puchta H, Hohn B (1991) A transient assay in plant cells reveals a positive correlation between extrachromosomal recombination rates and length of homologous overlap. Nucleic Acids Res 19(10):2693–2700PubMedCentralPubMedCrossRefGoogle Scholar
  77. Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD et al (2006) Global variation in copy number in the human genome. Nature 444(7118):444–454PubMedCentralPubMedCrossRefGoogle Scholar
  78. Saintenac C, Jiang D, Akhunov ED (2011) Targeted analysis of nucleotide and copy number variation by exon capture in allotetraploid wheat genome. Genome Biol 12(9):R88PubMedCentralPubMedCrossRefGoogle Scholar
  79. Scherer SW, Lee C, Birney E, Altshuler DM, Eichler EE, Carter NP et al (2007) Challenges and standards in integrating surveys of structural variation. Nat Genet 39(7 Suppl):S7–S15PubMedCentralPubMedCrossRefGoogle Scholar
  80. Schnable PS, Springer NM (2013) Progress toward understanding heterosis in crop plants. Annu Rev Plant Biol 64:71–88PubMedCrossRefGoogle Scholar
  81. Schrider DR, Hahn MW (2010) Gene copy-number polymorphism in nature. Proc R Soc B Biol Sci 277(1698):3213–3221CrossRefGoogle Scholar
  82. Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P et al (2004) Large-scale copy number polymorphism in the human genome. Science 305(5683):525–528PubMedCrossRefGoogle Scholar
  83. Simpson JT, Durbin R (2012) Efficient de novo assembly of large genomes using compressed data structures. Genome Res 22(3):549–556PubMedCentralPubMedCrossRefGoogle Scholar
  84. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM, Birol I (2009) ABySS: a parallel assembler for short read sequence data. Genome Res 19(6):1117–1123PubMedCentralPubMedCrossRefGoogle Scholar
  85. Springer NM, Ying K, Fu Y, Ji T, Yeh C-T, Jia Y et al (2009) Maize inbreds exhibit high levels of copy number variation (CNV) and presence/absence variation (PAV) in genome content. PLoS Genet 5(11):e1000734PubMedCentralPubMedCrossRefGoogle Scholar
  86. Stambuk BU, Dunn B, Alves SL Jr, Duval EH, Sherlock G (2009) Industrial fuel ethanol yeasts contain adaptive copy number changes in genes involved in vitamin B1 and B6 biosynthesis. Genome Res 19(12):2271–2278PubMedCentralPubMedCrossRefGoogle Scholar
  87. Stranger BE, Forrest MS, Dunning M, Ingle CE, Beazley C, Thorne N et al (2007) Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science 315(5813):848–853PubMedCentralPubMedCrossRefGoogle Scholar
  88. Sutton T, Baumann U, Hayes J, Collins NC, Shi B-J, Schnurbusch T et al (2007) Boron-toxicity tolerance in barley arising from efflux transporter amplification. Science 318(5855):1446–1449PubMedCrossRefGoogle Scholar
  89. Swanson-Wagner RA, Eichten SR, Kumari S, Tiffin P, Stein JC, Ware D et al (2010) Pervasive gene content variation and copy number variation in maize and its undomesticated progenitor. Genome Res 20(12):1689–1699PubMedCentralPubMedCrossRefGoogle Scholar
  90. Treangen TJ, Salzberg SL (2012) Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat Rev Genet 13(1):36–46Google Scholar
  91. Tuzun E, Sharp AJ, Bailey JA, Kaul R, Morrison VA, Pertz LM et al (2005) Fine-scale structural variation of the human genome. Nat Genet 37(7):727–732PubMedCrossRefGoogle Scholar
  92. Xu X, Liu X, Ge S, Jensen JD, Hu F, Li X et al (2012) Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nat Biotechnol 30(1):105–111CrossRefGoogle Scholar
  93. Yoon S, Xuan Z, Makarov V, Ye K, Sebat J (2009) Sensitive and accurate detection of copy number variants using read depth of coverage. Genome Res 19(9):1586–1592PubMedCentralPubMedCrossRefGoogle Scholar
  94. Yu P, Wang C-H, Xu Q, Feng Y, Yuan X-P, Yu H-Y et al (2013) Genome-wide copy number variations in Oryza sativa L. BMC Genomics 14:649PubMedCentralPubMedCrossRefGoogle Scholar
  95. Zhang J, Zuo T, Peterson T (2013) Generation of tandem direct duplications by reversed-ends transposition of maize ac elements. PLoS Genet 9(8):e1003691PubMedCentralPubMedCrossRefGoogle Scholar
  96. Zheng L-Y, Guo X-S, He B, Sun L-J, Peng Y, Dong S-S et al (2011) Genome-wide patterns of genetic variation in sweet and grain sorghum (Sorghum bicolor). Genome Biol 12(11):R114PubMedCentralPubMedCrossRefGoogle Scholar
  97. Zimin AV, Marçais G, Puiu D, Roberts M, Salzberg SL, Yorke JA (2013) The MaSuRCA genome assembler. Bioinformatics 29(21):2669–2677PubMedCentralPubMedCrossRefGoogle Scholar
  98. Zmieńko A, Samelak A, Kozłowski P, Figlerowicz M (2014) Copy number polymorphism in plant genomes. Theor Appl Genet 127:1–18Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Enrico Francia
    • 1
    • 2
  • Nicola Pecchioni
    • 1
    • 2
  • Alberto Policriti
    • 3
    • 4
  • Simone Scalabrin
    • 3
    • 5
  1. 1.Department of Life SciencesUniversity of Modena and Reggio EmiliaReggio EmiliaItaly
  2. 2.CGR – Center for Genome ResearchUniversity of Modena and Reggio EmiliaModenaItaly
  3. 3.Department of Mathematics and Computer ScienceUniversity of UdineUdineItaly
  4. 4.IGA - Institute of Applied GenomicsParco Scientifico e Tecnologico “L. Danieli”UdineItaly
  5. 5.IGA Technology ServicesParco Scientifico e Tecnologico “L. Danieli”UdineItaly

Personalised recommendations