Advertisement

The Complexity of Finding Effectors

  • Laurent Bulteau
  • Stefan Fafianie
  • Vincent Froese
  • Rolf Niedermeier
  • Nimrod Talmon
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9076)

Abstract

The NP-hard Effectors problem on directed graphs is motivated by applications in network mining, particularly concerning the analysis of (random) information-propagation processes. In the corresponding model the arcs carry probabilities and there is a probabilistic diffusion process activating nodes by neighboring activated nodes with probabilities as specified by the arcs. The point is to explain a given network activation state best possible using a minimum number of “effector nodes”; these are selected before the activation process starts.

We complement and extend previous work from the data mining community by a more thorough computational complexity analysis of Effectors, identifying both tractable and intractable cases. To this end, we also exploit a parameterization measuring the “degree of randomness” (the number of ‘really’ probabilistic arcs) which might prove useful for analyzing other probabilistic network diffusion problems.

References

  1. 1.
    Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice Hall, Upper Saddle River (1993)zbMATHGoogle Scholar
  2. 2.
    Askalidis, G., Berry, R.A., Subramanian, V.G.: Explaining snapshots of network diffusions: structural and hardness results. In: Cai, Z., Zelikovsky, A., Bourgeois, A. (eds.) COCOON 2014. LNCS, vol. 8591, pp. 616–625. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  3. 3.
    Ben-Zwi, O., Hermelin, D., Lokshtanov, D., Newman, I.: Treewidth governs the complexity of target set selection. Discrete Optim. 8(1), 87–96 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Bharathi, S., Kempe, D., Salek, M.: Competitive influence maximization in social networks. In: Deng, X., Graham, F.C. (eds.) WINE 2007. LNCS, vol. 4858, pp. 306–311. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  5. 5.
    Chopin, M., Nichterlein, A., Niedermeier, R., Weller, M.: Constant thresholds can make target set selection tractable. Theory Comput. Syst. 55(1), 61–83 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Domingos, P., Richardson, M.: Mining the network value of customers. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 57–66. ACM (2001)Google Scholar
  7. 7.
    Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Springer, London (2013)CrossRefzbMATHGoogle Scholar
  8. 8.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)Google Scholar
  9. 9.
    Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 137–146. ACM (2003)Google Scholar
  10. 10.
    Lappas, T., Terzi, E., Gunopulos, D., Mannila, H.: Finding effectors in social networks. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1059–1068. ACM (2010)Google Scholar
  11. 11.
    Nichterlein, A., Niedermeier, R., Uhlmann, J., Weller, M.: On tractable cases of target set selection. Soc. Netw. Anal. Min. 3(2), 233–256 (2013)CrossRefGoogle Scholar
  12. 12.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, New York (2006) CrossRefzbMATHGoogle Scholar
  13. 13.
    Wang, C., Chen, W., Wang, Y.: Scalable influence maximization for independent cascade model in large-scale social networks. Data Min. Knowl. Disc. 25(3), 545–576 (2012)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Laurent Bulteau
    • 1
  • Stefan Fafianie
    • 1
  • Vincent Froese
    • 1
  • Rolf Niedermeier
    • 1
  • Nimrod Talmon
    • 1
  1. 1.Institut Für Softwaretechnik Und Theoretische InformatikTU BerlinBerlinGermany

Personalised recommendations