Homecoming: A Multi-robot Exploration Method for Conjunct Environments with a Systematic Return Procedure

  • Shervin Ghasemlou
  • Ali Mohades
  • Taher Abbas Shangari
  • Mohammadreza Tavassoli
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8953)


The present work proposes a multi-robot exploration method for conjunct environments, based on one of the state-of-the-art algorithms. In many exploration missions, after the subject is found, it is beneficial if the discoverer robot returns back to the base station, in order to report, delivery or recharge. In addition, the exploration might need a long time to be finished or has to be done over and over. Returning back to the base station enables robots to get recharged, fixed, or even substituted with other robots. Furthermore, the equilibrium in task allocation to robots is this work’s other concern. The presented algorithm also reduces the maximum energy consumption of robots, as a good side effect. The efficiency of the proposed algorithm is demonstrated by providing simulation results for a variety of obstacle densities and different number of robots.


Multi-robot exploration Conjunct environment Task allocation 


  1. 1.
    Rogge, J., Aeyels, D.: A novel strategy for exploration with multiple robots. In 4th International Conference on Informatics in Control, Automation and Robotics, pp. 76–83. INSTICC Press, Milan (2007)Google Scholar
  2. 2.
    Kleiner, A., Prediger, J., Nebel, B.: RFID technology-based exploration and SLAM for search and rescue. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4054–4059. IEEE, Beijing (2006)Google Scholar
  3. 3.
    Ko, J., Stewart, B., Fox, D., Konolige, K., Limketkai, B.: A practical, decision-theoretic approach to multi-robot mapping and exploration. In: Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems, (IROS 2003), vol. 4, pp. 3232–3238. IEEE (2003)Google Scholar
  4. 4.
    Bell, J., Elizabeth, F., Costilla, O.: Cooperation of Autonomous NXT Robots Using Bluetooth Wireless Technology (2013)Google Scholar
  5. 5.
    Howard, A., Parker, L.E., Sukhatme, G.S.: Experiments with a large heterogeneous mobile robot team: exploration, mapping, deployment and detection. Int. J. Robot. Res. 25(5–6), 431–447 (2006)CrossRefGoogle Scholar
  6. 6.
    Wang, Y., Alei, L., Guan, H.: Frontier-based multi-robot map exploration using particle swarm optimization. In: IEEE Symposium on Swarm Intelligence (SIS), pp. 1–6. IEEE (2011)Google Scholar
  7. 7.
    Choset, H.: Coverage for robotics–a survey of recent results. Ann. Math. Artif. Intell. 31(1–4), 113–126 (2001)CrossRefGoogle Scholar
  8. 8.
    Zheng, X., Sven, K., Kempe, D., Jain, S.: Multirobot forest coverage for weighted and unweighted terrain. IEEE Trans. Robot. 26(6), 1018–1031 (2010)Google Scholar
  9. 9.
    Even, G., Naveen, G., Jochen, K., Ravi, R., Sinha, A.: Min–max tree covers of graphs. Oper. Res. Lett. 32(4), 309–315 (2004)Google Scholar
  10. 10.
    Sipahioglu, A., Kirlik, G., Parlaktuna, O., Yazici, A.: Energy constrained multi-robot sensor-based coverage path planning using capacitated arc routing approach. Robot. Auton. Syst. 58(5), 529–538 (2010)CrossRefGoogle Scholar
  11. 11.
    Yazici, A., Gokhan, K., Osman, P., Aydin, S.: A dynamic path planning approach for multi-robot sensor-based coverage considering energy constraints. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5930–5935 (2009)Google Scholar
  12. 12.
    Mandal, P., Barai, K.R., Maitra, M., Roy, S., Ghosh, S.: Autonomous robot coverage in rescue operation. In: International Conference on Computer Communication and Informatics (ICCCI), pp. 1–5 (2013)Google Scholar
  13. 13.
    Batsaikhan, D., Janchiv, A., Lee, S.-G.: Sensor-based incremental boustrophedon decomposition for coverage path planning of a mobile robot. In: Intelligent Autonomous Systems, vol. 12, pp. 621–628. Springer, Heidelberg (2013)Google Scholar
  14. 14.
    Senthilkumar, K.S., Bharadwaj, K.K.: Multi-robot exploration and terrain coverage in an unknown environment. Robot. Auton. Syst. 60(1), 123–132 (2012)CrossRefGoogle Scholar
  15. 15.
    Micael, S.C., Rocha, R.P., Figueiredo, C.M., Luz, J.A., Ferreira, N.M.F.: Multi-robot foraging based on Darwin’s survival of the fittest. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 801–806 (2012)Google Scholar
  16. 16.
    Hoff, N., Wood, R., Nagpal, R.: Distributed colony-level algorithm switching for robot swarm foraging. In: Distributed Autonomous Robotic Systems, pp. 417–430. Springer, Berlin (2013)Google Scholar
  17. 17.
    Ducatelle, F., Di Caro, G.A., Carlo, P., Francesco, M., Luca, G.: Communication assisted navigation in robotic swarms: self-organization and cooperation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4981–4988 (2011)Google Scholar
  18. 18.
    Simmons, R., David, A., Wolfram, B., Dieter, F., Mark, M., Sebastian, T., Håkan, Y.: Coordination for multi-robot exploration and mapping. In: AAAI/IAAI, pp. 852–858 (2000)Google Scholar
  19. 19.
    Burgard, W., Moors, M., Stachniss, C., Schneider, F.E.: Coordinated multi-robot exploration. IEEE Trans. Robot. 21(3), 376–386 (2005)CrossRefGoogle Scholar
  20. 20.
    Vazquez, J., Chris, M.: Distributed multirobot exploration maintaining a mobile network. In: Proceedings 2nd International IEEE Conference on Intelligent Systems, vol. 3, pp. 113–118 (2004)Google Scholar
  21. 21.
    Low, K.H., Chen, J., Dolan, J.M., Chien, S., Thompson, D.R.: Decentralized active robotic exploration and mapping for probabilistic field classification in environmental sensing. In: Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems, International Foundation for Autonomous Agents and Multiagent Systems, vol. 1, pp. 105–112 (2012)Google Scholar
  22. 22.
    Hawley, J., Zack, B.,: Hierarchical distributed task allocation for multi-robot exploration. In: Distributed Autonomous Robotic Systems, pp. 445–458. Springer, Heidelberg (2013)Google Scholar
  23. 23.
    Wawerla, J., Vaughan, R.T.: A fast and frugal method for team-task allocation in a multi-robot transportation system. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1432–1437 (2010)Google Scholar
  24. 24.
    Rooker, M.N., Birk, A.: Multi-robot exploration under the constraints of wireless networking. Control Eng. Pract. 15(4), 435–445 (2007)CrossRefGoogle Scholar
  25. 25.
    Fazli, P., Davoodi, A., Mackworth, A.K.: Multi-robot repeated area coverage. Auton. Robots 34(4), 251–276 (2013)CrossRefGoogle Scholar
  26. 26.
    Tanoto, A., Rückert, U.: Local navigation strategies for multi-robot exploration: from simulation to experimentation with mini-robots. Proc. Eng. 41, 1197–1203 (2012)CrossRefGoogle Scholar
  27. 27.
    Mei, Y., Lu, Y.-H., Hu, Y.C., Lee, C.S.G.: Deployment of mobile robots with energy and timing constraints. IEEE Trans. Robot. 22(3), 507–522 (2006)CrossRefGoogle Scholar
  28. 28.
    Mei, Y., Lu, Y.-H., Lee, C.S.G., Hu, Y.C.: Energy-efficient mobile robot exploration. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, ICRA, pp. 505–511 (2006)Google Scholar
  29. 29.
    Stirling, T., Dario, F.: Energy-time efficiency in aerial swarm deployment. In: Distributed Autonomous Robotic Systems, pp. 5–18. Springer, Heidelberg (2013)Google Scholar
  30. 30.
    Hazon, N., Kaminka, G.A.: On redundancy, efficiency, and robustness in coverage for multiple robots. Robot. Auton. Syst. 56(12), 1102–1114 (2008)CrossRefGoogle Scholar
  31. 31.
    Jaimes, A., Kota, S., Gomez, J.: An approach to surveillance an area using swarm of fixed wing and quad-rotor unmanned aerial vehicles UAV (s). In: IEEE International Conference on System of Systems Engineering, SoSE 2008, pp. 1–6 (2008)Google Scholar
  32. 32.
    Koveos, Y., Athanasia, P., Efthymios, K., Vasiliki, R., Konstantinos, K., Athanasios, T., Tzes A.: An integrated power aware system for robotic-based lunar exploration. In IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, pp. 827–832 (2007)Google Scholar
  33. 33.
    Kovács, T., Pásztor, A., Istenes, Z.: A multi-robot exploration algorithm based on a static bluetooth communication chain. Robot. Auton. Syst. 59(7), 530–542 (2011)CrossRefGoogle Scholar
  34. 34.
    Cox, T.F.: A method for mapping the dense and sparse regions of a forest stand. Appl. Stat. 28, 14–19 (1979)Google Scholar
  35. 35.
    Christensen, P.R.: The spatial distribution of rocks on Mars. Icarus 68(2), 217–238 (1986)CrossRefGoogle Scholar
  36. 36.
    Golombek, M.P., Haldemann, A.F.C., Forsberg‐Taylor, N.K., DiMaggio, E.N., Schroeder, R.D., Jakosky, B.M., Mellon, M.T., Matijevic, J.R.: Rock size‐frequency distributions on mars and implications for mars exploration rover landing safety and operations. J. Geophys. Res. Planets (1991–2012) 108(E12) (2003)Google Scholar
  37. 37.
    o’Rourke, J.: Computational Geometry in C. Cambridge University Press, Cambridge (1998)CrossRefzbMATHGoogle Scholar
  38. 38.
    Choset, H.M. (ed.): Principles of Robot Motion: Theory, Algorithms, and Implementation. MIT Press, Massachusetts (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Shervin Ghasemlou
    • 1
  • Ali Mohades
    • 2
  • Taher Abbas Shangari
    • 2
  • Mohammadreza Tavassoli
    • 2
  1. 1.Amirkabir Robotics CenterAmirkabir University of TechnologyTehranIran
  2. 2.Faculty of Mathematics and Computer ScienceAmirkabir University of TechnologyTehranIran

Personalised recommendations