Tableaux and Complexity Bounds for a Multiagent Justification Logic with Interacting Justifications

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8953)


We introduce a family of multi-agent justification logics with interactions between the agents’ justifications, by extending and generalizing the two-agent versions of the Logic of Proofs (LP) introduced by Yavorskaya in 2008. LP, and its successor, Justification Logic, is a refinement of the modal logic approach to epistemology in which for every belief assertion, an explicit justification is supplied. This affects the complexity of the logic’s derivability problem, which is known to be in the second level of the polynomial hierarchy (first result by Kuznets in 2000) for all single-agent justification logics whose complexity is known. We present tableau rules and some complexity results. In several cases the satisfiability problem for these logics remains in the second level of the polynomial hierarchy, while the problem becomes PSPACE-hard for certain two-agent logics and there are EXP-hard logics of three agents.


  1. 1.
    Achilleos, A.: A complexity question in justification logic. J. Comput. Syst. Sci. 80(6), 1038–1045 (2014)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Achilleos, A.: Modal logics with hard diamond-free fragments. CoRR, abs/1401.5846 (2014)Google Scholar
  3. 3.
    Achilleos, A.: On the complexity of two-agent justification logic. In: Bulling, N., van der Torre, L., Villata, S., Jamroga, W., Vasconcelos, W. (eds.) CLIMA 2014. LNCS, vol. 8624, pp. 1–18. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  4. 4.
    Artemov, S.: Explicit provability and constructive semantics. Bull. Symbolic Logic 7(1), 1–36 (2001)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Artemov, S.: Justification logic. In: Hölldobler, S., Lutz, C., Wansing, H. (eds.) JELIA 2008. LNCS (LNAI), vol. 5293, pp. 1–4. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  6. 6.
    Artemov, S.: The logic of justification. Rev. Symbolic Logic 1(4), 477–513 (2008)CrossRefMATHGoogle Scholar
  7. 7.
    Artemov, S., Kuznets, R.: Logical omniscience as infeasibility. Ann. Pure Appl. Logic 165(1), 6–25 (2014). CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Buss, S.R., Kuznets, R.: Lower complexity bounds in justification logic. Ann. Pure Appl. Logic 163(7), 888–905 (2012)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Demri, S.: Complexity of simple dependent bimodal logics. In: Dyckhoff, R. (ed.) TABLEAUX 2000. LNCS, vol. 1847, pp. 190–204. Springer, Heidelberg (2000) CrossRefGoogle Scholar
  10. 10.
    Dziubiński, M., Verbrugge, R., Dunin-Kȩplicz, B.: Complexity issues in multiagent logics. Fundamenta Informaticae 75(1), 239–262 (2007)MATHMathSciNetGoogle Scholar
  11. 11.
    Fitting, M.: The logic of proofs, semantically. Ann. Pure Appl. Logic 132(1), 1–25 (2005)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Krupski, N.V.: On the complexity of the reflected logic of proofs. Theor. Comput. Sci. 357(1–3), 136–142 (2006)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Kuznets, R.: On the complexity of explicit modal logics. In: Clote, P.G., Schwichtenberg, H. (eds.) CSL 2000. LNCS, vol. 1862, pp. 371–383. Springer, Heidelberg (2000). Errata concerning the explicit counterparts of \({\cal D}\) and \({\cal D4}\) are published as [15] CrossRefGoogle Scholar
  14. 14.
    Kuznets, R.: Complexity Issues in Justification Logic. Ph.D. thesis, CUNY Graduate Center, May 2008Google Scholar
  15. 15.
    Kuznets, R.: Complexity through tableaux in justification logic. In: Plenary Talks, Tutorials, Special Sessions, Contributed Talks of Logic Colloquium (LC 2008), Bern, Switzerland, pp. 38–39 (2008)Google Scholar
  16. 16.
    Kuznets, R.: Self-referentiality of justified knowledge. In: Hirsch, E.A., Razborov, A.A., Semenov, A., Slissenko, A. (eds.) Computer Science – Theory and Applications. LNCS, vol. 5010, pp. 228–239. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  17. 17.
    Kuznets, R., Studer, T.: Update as evidence: belief expansion. In: Artemov, S., Nerode, A. (eds.) LFCS 2013. LNCS, vol. 7734, pp. 266–279. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  18. 18.
    Mkrtychev, A.: Models for the logic of proofs. In: Adian, S., Nerode, A. (eds.) Logical Foundations of Computer Science. LNCS, vol. 1234, pp. 266–275. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  19. 19.
    Pacuit, E.: A note on some explicit modal logics. In: Proceedings of the 5th Panhellenic Logic Symposium, Athens, Greece, University of Athens (2005)Google Scholar
  20. 20.
    Spaan, E.: Complexity of modal logics. Ph.D. thesis, University of Amsterdam (1993)Google Scholar
  21. 21.
    Yavorskaya (Sidon), T.: Interacting explicit evidence systems. Theor. Comput. Syst. 43(2), 272–293 (2008)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.The Graduate Center of the City University of New YorkNew YorkUSA

Personalised recommendations