Advertisement

The Role of Intraflagellar Transport in the Photoreceptor Sensory Cilium

  • Daniel G. Taub
  • Qin LiuEmail author
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 854)

Abstract

The photoreceptor is a complex specialized cell in which a major component responsible for visual transduction is the photoreceptor sensory cilium (PSC). Building and maintenance of the PSC requires the transport of large proteins along microtubules that extend from the inner segments to the outer segments. A key process, termed intraflagellar transport (IFT), has been recognized as an essential phenomenon for photoreceptor development and maintenance, and exciting new studies have highlighted its importance in retinal and cilia related diseases. This review focuses on the important roles of IFT players, including motor proteins, IFT proteins, and photoreceptor-specific cargos in photoreceptor sensory cilium. In addition, specific IFT components that are involved in inherited human diseases are discussed.

Keywords

Inherited retinal degeneration Intraflagellar transport (IFT) Cilia Photoreceptor Protein transport 

References

  1. Aldahmesh MA, Li Y, Alhashem A et al (2014) IFT27, encoding a small GTPase component of IFT particles, is mutated in a consanguineous family with Bardet-Biedl syndrome. Hum Mol Genet 23:3307–3315CrossRefPubMedPubMedCentralGoogle Scholar
  2. Arts HH, Bongers EM, Mans DA et al (2011) C14ORF179 encoding IFT43 is mutated in Sensenbrenner syndrome. J Med Genet 48:390–395CrossRefPubMedGoogle Scholar
  3. Badano JL, Leitch CC, Ansley SJ et al (2006) Dissection of epistasis in oligogenic Bardet-Biedl syndrome. Nature 439:326–330CrossRefPubMedGoogle Scholar
  4. Baker SA, Freeman K, Luby-Phelps K et al (2003) IFT20 links kinesin II with a mammalian intraflagellar transport complex that is conserved in motile flagella and sensory cilia. J Biol Chem 278:34211–34218CrossRefPubMedGoogle Scholar
  5. Beales PL, Bland E, Tobin JL et al (2007) IFT80, which encodes a conserved intraflagellar transport protein, is mutated in Jeune asphyxiating thoracic dystrophy. Nat Genet 39:727–729CrossRefPubMedGoogle Scholar
  6. Besharse JC, Forestner DM, Defoe DM (1985) Membrane assembly in retinal photoreceptors. III. Distinct membrane domains of the connecting cilium of developing rods. J Neurosci 5:1035–1048PubMedGoogle Scholar
  7. Bhowmick R, Li M, Sun J et al (2009) Photoreceptor IFT complexes containing chaperones, guanylyl cyclase 1 and rhodopsin. Traffic 10:648–663CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bredrup C, Saunier S, Oud MM et al (2011) Ciliopathies with skeletal anomalies and renal insufficiency due to mutations in the IFT-A gene WDR19. Am J Hum Genet 89:634–643CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bujakowska KM, Zhang Q, Liu Q et al (2014) Mutations in IFT172 cause isolated and syndromic retinal degeneration. Invest Ophthalmol Vis Sci 55: E-Abstract 1278Google Scholar
  10. Calvert PD, Strissel KJ, Schiesser WE et al (2006) Lightdriven translocation of signaling proteins in vertebrate photoreceptors. Trends Cell Biol 16:560–568CrossRefPubMedGoogle Scholar
  11. Cole DG, Diener DR, Himelblau AL et al (1998) Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons. J Cell Biol 141:993–1008CrossRefPubMedPubMedCentralGoogle Scholar
  12. Coussa RG, Otto EA, Gee HY et al (2013) WDR19: an ancient, retrograde, intraflagellar ciliary protein is mutated in autosomal recessive retinitis pigmentosa and in Senior-Loken syndrome. Clin Genet 84:150–159CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dagoneau N, Goulet M, Geneviève D et al (2009) DYNC2H1 mutations cause asphyxiating thoracic dystrophy and short rib-polydactyly syndrome, type III. Am J Hum Genet 84:706–711CrossRefPubMedPubMedCentralGoogle Scholar
  14. Davis EE, Katsanis N (2012) The ciliopathies: a transitional model into systems biology of human genetic disease. Curr Opin Genet Dev 22:290–303CrossRefPubMedPubMedCentralGoogle Scholar
  15. Davis EE, Zhang Q, Liu Q et al (2011) TTC21B contributes both causal and modifying alleles across the ciliopathy spectrum. Nat Genet 43:189–196CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gilissen C, Arts HH, Hoischen A et al (2010) Exome sequencing identifies WDR35 variants involved in Sensenbrenner syndrome. Am J Hum Genet 87:418–423CrossRefPubMedPubMedCentralGoogle Scholar
  17. Halbritter J, Bizet AA, Schmidts M et al (2013) Defects in the IFT-B component IFT172 cause Jeune and Mainzer-Saldino syndromes in humans. Am J Hum Genet 93:915–925CrossRefPubMedPubMedCentralGoogle Scholar
  18. Herron BJ, Lu W, Rao C, Liu S et al (2002) Efficient generation and mapping of recessive developmental mutations using ENU mutagenesis. Nat Genet 30:185–189CrossRefPubMedGoogle Scholar
  19. Insinna C, Besharse JC (2008) Intraflagellar transport and the sensory outer segment of vertebrate photoreceptors. Dev Dyn 237:1982–1992CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kozminski KG, Johnson KA, Forscher P et al (1993) A motility in the eukaryotic flagellum unrelated to flagellar beating. Proc Natl Acad Sci U S A 90:5519–5523CrossRefPubMedPubMedCentralGoogle Scholar
  21. Krock BL, Mills-Henry I, Perkins BD (2009) Retrograde intraflagellar transport by cytoplasmic dynein-2 is required for outer segment extension in vertebrate photoreceptors but not arrestin translocation. Invest Ophthalmol Vis Sci 50:5463–5471CrossRefPubMedPubMedCentralGoogle Scholar
  22. Liu Q, Tan G, Levenkova N et al (2007) The proteome of the mouse photoreceptor sensory cilium complex. Mol Cell Proteomics 6:1299–1317CrossRefPubMedPubMedCentralGoogle Scholar
  23. Marszalek JR, Liu X, Roberts EA et al (2000) Genetic evidence for selective transport of opsin and arrestin by kinesin-II in mammalian photoreceptors. Cell 102:175–187CrossRefPubMedGoogle Scholar
  24. Mikami A, Tynan SH, Hama T et al (2002) Molecular structure of cytoplasmic dynein 2 and its distribution in neuronal and ciliated cells. J Cell Sci 115(Pt 24):4801–4808CrossRefPubMedGoogle Scholar
  25. Pazour GJ, Wilkerson CG, Witman GB (1998) A dynein light chain is essential for the retrograde particle movement of intraflagellar transport (IFT). J Cell Biol 141:979–992CrossRefPubMedPubMedCentralGoogle Scholar
  26. Pazour GJ, Baker SA, Deane JA et al (2002) The intraflagellar transport protein, IFT88, is essential for vertebrate photoreceptor assembly and maintenance. J Cell Biol 157:103–113CrossRefPubMedPubMedCentralGoogle Scholar
  27. Perrault I, Saunier S, Hanein S et al (2012) Mainzer-Saldino syndrome is a ciliopathy caused by IFT140 mutations. Am J Hum Genet 90:864–870CrossRefPubMedPubMedCentralGoogle Scholar
  28. Signor D, Wedaman KP, Orozco JT et al (1999) Role of a class DHC1b dynein in retrograde transport of IFT motors and IFT raft particles along cilia, but not dendrites, in chemosensory neurons of living Caenorhabditis elegans. J Cell Biol 147:519–530CrossRefPubMedPubMedCentralGoogle Scholar
  29. Walczak-Sztulpa J, Eggenschwiler J, Osborn D et al (2010) Cranioectodermal Dysplasia, Sensenbrenner syndrome, is a ciliopathy caused by mutations in the IFT122 gene. Am J Hum Genet 86:949–956CrossRefPubMedPubMedCentralGoogle Scholar
  30. Young RW (1967) The renewal of photoreceptor cell outer segments. J Cell Biol 33:61–72CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Ocular Genomics Institute, and Berman-Gund Laboratory for the Study of Retinal Degenerations, Department of OphthalmologyMassachusetts Eye and Ear Infirmary, Harvard Medical SchoolBostonUSA

Personalised recommendations