Supporting Data Analytics for Smart Cities: An Overview of Data Models and Topology

  • Patrick E. BradleyEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9047)


An overview of data models suitable for smart cities is given. CityGML and \(G\)-maps implicitly model the underlying combinatorial structure, whereas topological databases make this structure explicit. This combinatorial structure is the basis for topological queries, and topological consistency of such data models allows for correct answers to topological queries. A precise definition of topological consistency in the two-dimensional case is given and an application to data models is discussed.


Geographic Information System Betti Number Smart City Combinatorial Structure Adjacency Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akleman, E., Chen, J.: Guaranteeing the 2-manifold property for meshes with doubly linked face list. Int. J. Shape Model. 5, 159–177 (1999)CrossRefGoogle Scholar
  2. 2.
    Alexandroff, P.: Diskrete Räume. Matematiećeskij Sbornik 44(2), 501–519 (1937)Google Scholar
  3. 3.
    Boudriault, G.: Topology in the TIGER file. In: Proceedings of the International Symposium on Computer-Assisted Cartography, pp. 258–263 (1987)Google Scholar
  4. 4.
    Bradley, P.: Topological consistency of polygon complexes in CityGML. Work in progressGoogle Scholar
  5. 5.
    Bradley, P., Paul, N.: Using the relational model to capture topological information of spaces. The Computer Journal 53, 69–89 (2010)CrossRefGoogle Scholar
  6. 6.
    Bradley, P., Paul, N.: Comparing \(G\)-maps with other topological data structures. Geoinformatica 18(3), 595–620 (2014)CrossRefGoogle Scholar
  7. 7.
    Breunig, M., Zlatanova, S.: 3D geo-database research: Retrospective and future directions. Computers & Geosciences 37, 791–803 (2011)CrossRefGoogle Scholar
  8. 8.
    Corcoran, P., Mooney, P., Bertolotto, M.: Line simplification in the presence of non-planar topological relationships. In: Gensel, J., et al. (eds.) Bridging the Geographic Information Sciences. Lecture Notes in Geoinformation and Cartography, pp. 25–42. Springer (2012)Google Scholar
  9. 9.
    Gattass, M., Paulino, G., Gortaire, J.: Geometrical and topological consistency in interactive graphical preprocessors of three-dimensional framed structures. Computers & Structures 46(1), 99–124 (1993)CrossRefzbMATHGoogle Scholar
  10. 10.
    Gröger, G., Plümer, L.: How to achieve consistency for 3D city models. Geoinformatica 15, 137–165 (2011)CrossRefGoogle Scholar
  11. 11.
    Gröger, G., Plümer, L.: Provably correct and complete transaction rules for updating 3D city models. Geoinformatica 16, 131–164 (2012)CrossRefGoogle Scholar
  12. 12.
    Gröger, G., Plümer, L.: Transaction rules for updating surfaces in 3D GIS. ISPRS Journal of Photogrammetry and Remote Sensing 69, 134–145 (2012)CrossRefGoogle Scholar
  13. 13.
    Kolbe, T.: Representing and exchanging 3D city models with cityGML. In: Lee, J., Zlatanova, S. (eds.) Proc. 3rd Int. Workshop on 3D Geo-Information. Lecture Notes in Geoinformation & Cartography (2009)Google Scholar
  14. 14.
    Ledoux, H., Meijers, M.: Topologically consistent 3D city models obtained by extrusion. IJGIS 25(4), 557–574 (2011)Google Scholar
  15. 15.
    Lienhardt, P.: \(N\)-dimensional generalized combinatorial maps and cellular quasi-manifolds. International Journal on Computational Geometry and Applications 4(3), 275–324 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Paul, N., Bradley, P.: Eine Erweiterung des Relationalen Modells zur Repräsentation räumlichen Wissens. Datenbank-Spektrum, Online First (August (2014)Google Scholar
  17. 17.
    Tao, W.: Interdisciplinary urban GIS for smart cities: advancements and opportunities. Geo-spatial Information Science 16(1), 25–34 (2013)CrossRefGoogle Scholar
  18. 18.
    Ubeda, T., Egenhofer, M.: Topological error correcting in GIS. In: Scholl, Michel O., Voisard, Agnès (eds.) SSD 1997. LNCS, vol. 1262, pp. 281–297. Springer, Heidelberg (1997) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Karlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations