Underwater Mixed Environments

  • Uwe Freiherr von Lukas
  • John Quarles
  • Panagiotis Kaklis
  • Tim Dolereit
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8844)

Abstract

In this chapter we give a systematic overview over Virtual Reality (VR) and Augmented Reality (AR) in underwater settings and suggest several future applications. Based on a novel classification scheme we illustrate the broad range of available and future implementation options. Whilst we find a variety of previous work on creating and using virtual underwater worlds, quite few examples of real underwater settings exist up to now. Thus, we concentrate on this new category, sketch attractive application areas that go beyond entertainment, and derive requirements for Underwater Mixed Environments (UWME). Combined with a short summary on relevant aspects of underwater optics, we formulate potential topics of future research to overcome current limitations of UWME.

Keywords

Virtual Reality Augmented Reality Maritime technology Rehabilitation Ship Maintenance Marine research 

Notes

Acknowledgments

The authors wish to thank all the participants in the session on Unconventional Mixed Environments of the Dagstuhl seminar 2013 on Virtual Realities [11] for their valuable contributions to the topic. Furthermore, the authors would like to thank the anonymous reviewers for their suggestions and comments.

References

  1. 1.
    Abramson, C.I., Buckbee, D.A., Edwards, S., Bowe, K.: A demonstration of virtual reality in free-flying honeybees: Apis mellifera. Physiol. Behav. 59(1), 39–43 (1996)CrossRefGoogle Scholar
  2. 2.
    Alankus, G., Lazar, A., May, M., Kelleher, C.: Towards customizable games for stroke rehabilitation. In: CHI, pp. 2113–2122. ACM (2010)Google Scholar
  3. 3.
    Anguita, D., Brizzolara, D., Parodi, G.: Building an underwater wireless sensor network based on optical: communication: research challenges and current results. In: Third International Conference on Sensor Technologies and Applications, 2009. SENSORCOMM 2009, pp. 476–479, June 2009Google Scholar
  4. 4.
    Armutlu, K., Karabudak, R., Nurlu, G.: Physiotherapy approaches in the treatment of ataxic multiple sclerosis: a pilot study. Neurorehabilitation Neural Repair 15(3), 203 (2001)CrossRefGoogle Scholar
  5. 5.
    Baram, Y., Miller, A.: Virtual reality cues for improvement of gait in patients with multiple sclerosis. Neurology 66(2), 178 (2006)CrossRefGoogle Scholar
  6. 6.
    Barnes, H.E., Gennari, J.J.: A review of pressure-tolerant electronics (pte) (1976)Google Scholar
  7. 7.
    Bartlett, A.A.: Note on a common virtual image. Am. J. Phys. 52(7), 640 (1984)CrossRefGoogle Scholar
  8. 8.
    Beckhaus, S., Kruijff, E.: Unconventional human computer interfaces. In: ACM SIGGRAPH 2004 Course Notes, p. 18. ACM, Los Angeles (2004)Google Scholar
  9. 9.
    Bellarbi, A., Domingues, C., Otmane, S., Benbelkacem, S., Dinis, A.: Augmented reality for underwater activities with the use of the dolphyn. In: 2013 10th IEEE International Conference on Networking, Sensing and Control, ICNSC 2013, pp. 409–412 (2013)Google Scholar
  10. 10.
    Betker, A.L., Desai, A., Nett, C., Kapadia, N., Szturm, T.: Game-based exercises for dynamic short-sitting balance rehabilitation of people with chronic spinal cord and traumatic brain injuries. Phys. Ther. 87(10), 1389 (2007)CrossRefGoogle Scholar
  11. 11.
    Brunnett, G., Coquillart, S., van Liere, R., Welch, G.F.: Virtual realities (dagstuhl seminar 13241). Dagstuhl Rep. 3(6), 38–66 (2013)Google Scholar
  12. 12.
    Butail, S., Chicoli, A., Paley, D.A.: Putting the fish in the fish tank: immersive vr for animal behavior experiments. In: Proceedings - IEEE International Conference on Robotics and Automation, pp. 5018–5023 (2012)Google Scholar
  13. 13.
    Callow, M.E., Callow, J.E.: Marine biofouling: a sticky problem. Biologist (London, England) 49(1), 10–14 (2002)MathSciNetGoogle Scholar
  14. 14.
    Chapman, P., Bale, K., Drap, P.: We all live in a virtual submarine. IEEE Comput. Graphics Appl. 30(1), 85–89 (2010)CrossRefGoogle Scholar
  15. 15.
    Chen, T.-P.G., Kinoshita, Y., Takama, Y., Fels, S., Funahashi, K., Gadd, A.: Swimming across the pacific: a virtual swimming interface. In: ACM SIGGRAPH 2004: Emerging Technologies, SIGGRAPH 2004, p. 27 (2004)Google Scholar
  16. 16.
    Chouiten, M., Domingues, C., Didier, J.-Y., Otmane, S., Mallem, M., (eds.) Distributed mixed reality for remote underwater telerobotics exploration: ACM International Conference Proceeding Series (2012)Google Scholar
  17. 17.
    Cobb, S.V.G., Sharkey, P.M.: A decade of research and development in disability, virtual reality and associated technologies: promise or practice? In: International Conference on Disability, Virtual Reality and Associated Technologies, pp. 3–16 (2006)Google Scholar
  18. 18.
    Crosbie, J.H., Lennon, S., McGoldrick, M.C., McNeill, M.D.J., Burke, J.W., McDonough, S.M.: Virtual reality in the rehabilitation of the upper limb after hemiplegic stroke: a randomised pilot study. In: Proceedings of the 7th ICDVRAT with ArtAbilitation, Maia, Portugal, pp. 229–235 (2008)Google Scholar
  19. 19.
    da Silveira Sarmento, G., Pegoraro, A.S.N., Cordeiro, R.C.: Aquatic physical therapy as a treatment modality in healthcare for non-institutionalized elderly persons: a systematic review. Einstein (16794508) 9(1), 84–89 (2011)Google Scholar
  20. 20.
    Davis, B.C., Patrón, P., Arredondo, M., Lane, D.M.: Augmented reality and data fusion techniques for enhanced situational awareness of the underwater domain. In: OCEANS 2007 - Europe (2007)Google Scholar
  21. 21.
    Dolereit, T., Kuijper, A.: Converting underwater imaging into imaging in air. In: Proceedings of the 9th International Conference on Computer Vision Theory and Applications, vol. 1 (2014)Google Scholar
  22. 22.
    Fletcher, B., Harris, S.: Development of a virtual environment based training system for rov pilots. In: Conference Proceedings of the OCEANS 1996. MTS/IEEE. Prospects for the 21st Century, vol. 1, pp. 65–71 (1996)Google Scholar
  23. 23.
    Flores, E., Tobon, G., Cavallaro, E., Cavallaro, F.I., Perry, J.C., Keller, T.: Improving patient motivation in game development for motor deficit rehabilitation. In: Proceedings of the 2008 International Conference on Advances in Computer Entertainment Technology, ACE 2008, pp. 381–384. ACM, New York (2008)Google Scholar
  24. 24.
    Fröhlich, T.: The virtual oceanarium. Commun. ACM 43(7), 94–101 (2000)CrossRefGoogle Scholar
  25. 25.
    Gehlsen, G.M., Grigsby, S.A., Winant, D.M.: Effects of an aquatic fitness program on the muscular strength and endurance of patients with multiple sclerosis. Phys. Ther. 64(5), 653–657 (1984)Google Scholar
  26. 26.
    Glotzbach, T., Voigt, A., Pfützenreuter, T., Jacobi, M., Rauschenbach, T.: Cviewvr: a high-performance visualization tool for team-oriented missions of unmanned marine verhicles. In: Bertram, V. (ed.) 8th International Conference on Computer and IT Applications in the Maritime Industries, Compit 2009, pp. 150–164 (2009)Google Scholar
  27. 27.
    Gray, J.R., Pawlowski, V., Willis, M.A.: A method for recording behavior and multineuronal cns activity from tethered insects flying in virtual space. J. Neurosci. Methods 120(2), 211–223 (2002)CrossRefGoogle Scholar
  28. 28.
    Hamilton, F., Rochester, L., Paul, L., Rafferty, D., O’Leary, C.P., Evans, J.J.: Walking and talking: an investigation of cognitive-motor dual tasking in multiple sclerosis. Mult. Scler. 15(10), 1215 (2009)CrossRefGoogle Scholar
  29. 29.
    Haydar, M., Roussel, D., Maïdi, M., Otmane, S., Mallem, M.: Virtual and augmented reality for cultural computing and heritage: a case study of virtual exploration of underwater archaeological sites (preprint). virtual reality 15(4), 311–327 (2011)CrossRefGoogle Scholar
  30. 30.
    Henke, B., Vahl, M., Zhou, Z.: Removing color cast of underwater images through non-constant color constancy hypothesis. In: International Symposium on Image and Signal Processing and Analysis, ISPA, pp. 20–24 (2013)Google Scholar
  31. 31.
    Jaffe, J.S.: Computer modeling and the design of optimal underwater imaging systems. IEEE J. Oceanic Eng. 15(2), 101–111 (1990)CrossRefMathSciNetGoogle Scholar
  32. 32.
    Jaffe, J.S., Laxton, B., Zylinski, S.: The sub sea holodeck: a 14-megapixel immersive virtual environment for studying cephalopod camouflage behavior. In: OCEANS 2011 IEEE - Spain (2011)Google Scholar
  33. 33.
    Jiang, S.: Electromagnetic wave propagation into fresh water. J. Electromagn. Anal. Appl. 03(07), 261–266 (2011)Google Scholar
  34. 34.
    Jorgensen, R.: Slow steaming: The full story. AP Moller-Maersk Group, Copenhagen (2011)Google Scholar
  35. 35.
    Jung, S., Choi, Y.-S., Choi, J.-S., Koo, B.-K., Lee, W.H.: Immersive virtual aquarium with real-walking navigation. In: Proceedings - VRCAI 2013: 12th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and Its Applications in Industry, pp. 291–294 (2013)Google Scholar
  36. 36.
    Kawamoto Jr., L.T., Slaets, A.F.F.: Software to train scuba dive procedures. Appl. Mech. Mater. 440, 346–353 (2013)Google Scholar
  37. 37.
    Kuchenbecker, K., Gurari, N., Okamura, A.: Effects of visual and proprioceptive motion feedback on human control of targeted movement. In: Proceedings of the IEEE 10th International Conference on Rehabilitation Robotics (2007)Google Scholar
  38. 38.
    Lee, J.-M., Lee, K.-H., Kim, D.-S., Kim, C.-H.: Active insp ection supporting system based on mixed reality after design and manufacture in an offshore structure. J. Mech. Sci. Technol. 24(1), 197–202 (2010)CrossRefGoogle Scholar
  39. 39.
    Lin, Q., Kuo, C.: Assisting the teleoperation of an unmanned underwater vehicle using a synthetic subsea scenario. Presence Teleoperators Virtual Environ. 8(5), 520–530 (1999)CrossRefGoogle Scholar
  40. 40.
    von Lukas, U.: Virtual and augmented reality for the maritime sector- applications and requirements. In: IFAC Proceedings Volumes (IFAC-PapersOnline), pp. 196–200 (2010)Google Scholar
  41. 41.
    Lynch, D.K., Livingston, W.C.: Color and Light in Nature. Cambridge University Press, Cambridge (2001) Google Scholar
  42. 42.
    Merians, A.S., Poizner, H., Boian, R., Burdea, G., Adamovich, S.: Sensorimotor training in a virtual reality environment: does it improve functional recovery poststroke? Neurorehabilitation Neural Repair 20(2), 252 (2006)CrossRefGoogle Scholar
  43. 43.
    Milgram, P., Kishino, F.: Taxonomy of mixed reality visual displays. IEICE Trans. Inf. Syst. E77–d(12), 1321–1329 (1994)Google Scholar
  44. 44.
    Morales, R., Keitler, P., Maier, P., Klinker, G.: An underwater augmented reality system for commercial diving operations. In: OCEANS 2009, MTS/IEEE Biloxi - Marine Technology for Our Future: Global and Local Challenges (2009)Google Scholar
  45. 45.
    Nassiraei, A.A.F., Sonoda, T., Ishii, K.: Development of ship hull cleaning underwater robot. In: 2012 Fifth International Conference on Emerging Trends in Engineering and Technology (ICETET), pp. 157–162, November 2012Google Scholar
  46. 46.
    Oppermann, L., Blum, L., Lee, J.-Y., Seo, J.-H.: Areef: multi-player underwater augmented reality experience. In: IEEE Consumer Electronics Society’s International Games Innovations Conference, IGIC, pp. 199–202 (2013)Google Scholar
  47. 47.
    Riess, T.J.: Augmented reality in parkinson’s disease. CyberPsychology Behav. 2(3), 231–239 (1999)CrossRefGoogle Scholar
  48. 48.
    Sendra, S., Lloret, J., Rodrigues, J.J.P.C., Aguiar, J.M.: Underwater wireless communications in freshwater at 2.4 GHz. Ieee Commun. Lett. 17(9), 1794–1797 (2013)CrossRefGoogle Scholar
  49. 49.
    Shen, Y., Ong, S.K., Nee, A.Y.C.: Hand rehabilitation based on augmented reality. In: Proceedings of the 3rd International Convention on Rehabilitation Engineering & Assistive Technology, i-CREATe 2009, pp. 23:1–23:4. ACM, New York (2009)Google Scholar
  50. 50.
    Smyth, M., Wann, J.: Interactive interfaces for movement rehabilitation in virtual environments. In: Proceedings of the Third International Conference Series on Disability, Virtual Reality and Associated Technologies (ICDVRAT), Alghero, Sardinia, Italy, September 2000Google Scholar
  51. 51.
    Snook, E., Motl, R.: Effect of exercise training on walking mobility in multiple sclerosis: a meta-analysis. Neurorehabilitation Neural Repair 23(2), 108 (2009)CrossRefGoogle Scholar
  52. 52.
    National MS Society. Who gets ms?Google Scholar
  53. 53.
    Steffin, M.: Virtual reality therapy of multiple sclerosis and spinal cord injury: design considerations for a haptic-visual interface. In: Riva, G., Wiederhold, B., Molinari, E., Wiederhold, B.K. (eds.) Virtual Reality in Neuro-psycho-physiology: Cognitive, Clinical and Methodological Issues in Assessment and Rehabilitation, p. 185. IOS Press, Amsterdam (1997)Google Scholar
  54. 54.
    Sveistrup, H.: Motor rehabilitation using virtual reality. J. NeuroEngineering Rehabil. 1(1), 10 (2004)CrossRefGoogle Scholar
  55. 55.
    Syed, A.A., Heidemann, J.: Time synchronization for high latency acoustic networks. In: INFOCOM 2006. Proceedings of the 25th IEEE International Conference on Computer Communications, pp. 1–12, April 2006Google Scholar
  56. 56.
    Thiede, C., Buscher, M., Lück, M., Lehr, H., Körner, G., Martin, J., Schlichting, M., Krüger, S., Huth, H.: An overall pressure tolerant underwater vehicle: Dns pegel. In: OCEANS 2009 IEEE Bremen: Balancing Technology with Future Needs (2009)Google Scholar
  57. 57.
    Trivedi, C.A., Bollmann, J.H.: Visually driven chaining of elementary swim patterns into a goal-directed motor sequence: a virtual reality study of zebrafish prey capture. Front. Neural Circuits 86 p. (2013). doi:10.3389/fncir.2013.00086
  58. 58.
    Troy, M.I.: Virtual health and safety could be the answer for infrequent tasks. Virtual Manufacturing for Real Savings column, DELMIA World News, no. 7 (2003)Google Scholar
  59. 59.
    Vasilijević, A., Borović, B., Vukić, Z.: Augmented reality in marine applications: Primjene proširene stvarnosti u pomorstvu. Brodogradnja 62(2), 136–142 (2011)Google Scholar
  60. 60.
    Wang, J., Ma, Y.: Testing-oriented simulator for autonomous underwater vehicles. In: Sun, Z., Deng, Z. (eds.) Proceedings of 2013 Chinese Intelligent Automation Conference. LNEE, pp. 289–297. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  61. 61.
    Wang, J., Zhan, R., Liu, X.: Virtual reality-based forward looking sonar simulation. In: Sun, Z., Deng, Z. (eds.) Proceedings of 2013 Chinese Intelligent Automation Conference. LNEE, pp. 299–308. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  62. 62.
    Wang, Y., Chen, Y., Zhang, W., Liu, D., Huang, H.: Study on underwater wet arc welding training with haptic device. In: 2009 IEEE International Conference on Virtual Environments, Human-Computer Interfaces, and Measurements Systems, VECIMS 2009 - Proceedings, pp. 191–195 (2009)Google Scholar
  63. 63.
    Ware, C., Arthur, K., Booth, K.S.: Fish tank virtual reality. In: Proceedings of the Conference on Human Factors in Computing Systems, pp. 37–42 (1993)Google Scholar
  64. 64.
    Wiesmann, A.: Slow steaming-a viable long-term option? Wartsila Tech. J. 2, 49–55 (2010)Google Scholar
  65. 65.
    Zotz, T.G.G., Souza, E.A., Israel, V.L., Loureiro, A.P.C.: Aquatic physical therapy for parkinson disease. Adv. Parkinson’s Dis. 2, 102 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Uwe Freiherr von Lukas
    • 1
  • John Quarles
    • 2
  • Panagiotis Kaklis
    • 3
  • Tim Dolereit
    • 1
    • 4
  1. 1.Maritime GraphicsFraunhofer IGDRostockGermany
  2. 2.Department of Computer ScienceUniversity of Texas at San AntonioSan AntonioUSA
  3. 3.Department Naval Architecture, Ocean and Marine EngineeringUniversity of StrathclydeGlasgowUK
  4. 4.Institute for Computer ScienceUniversity of RostockRostockGermany

Personalised recommendations