SMASPARES–SMOS Data Assimilation for Parameter Estimation in Radiative Transfer Models

  • Carsten Montzka
  • Cho Miltin Mboh
  • Kathrina Rötzer
Chapter
Part of the Springer Earth System Sciences book series (SPRINGEREARTH)

Abstract

The validation of the SMOS Level 2 soil moisture product in the Rur and Erft catchments, Germany, showed that two main directions for enhancement should be followed: (i) improving radio frequency interference (RFI) mitigation strategies, and (ii) improving the parameterization of the radiative transfer model (RTM). Therefore, in this chapter two methods are developed to investigate the characteristics of RTM parameters, with a strong focus on soil surface roughness and vegetation opacity. One approach uses a dual state-parameter estimation technique in a data assimilation environment to select adequate parameters. It is a one-dimensional synthetic experiment neglecting spatial pattern of soil moisture as well as parameters. The spatial scale comes into play by investigating the feasibility of parameter estimation from synthetic disaggregated SMOS brightness temperature time series for the Rur and Erft catchments. A new partial grid search approach to parameter estimation (PAGSAPE) is developed in order to reduce computational cost compared to ensemble methods, which is important for future global applications.

References

  1. 1.
    Kerr YH, Waldteufel P, Wigneron JP, Martinuzzi JM, Font J, Berger M (2001) Soil moisture retrieval from space: the soil moisture and ocean salinity (SMOS) mission. IEEE Trans Geosci Remote Sens 39(8):1729–1735CrossRefGoogle Scholar
  2. 2.
    Mecklenburg S, Drusch M, Kerr YH, Font J, Martin-Neira M, Delwart S, Buenadicha G, Reul N, Daganzo-Eusebio E, Oliva R, Crapolicchio R (2012) ESA’s soil moisture and ocean salinity mission (SMOS). IEEE Trans Geosci Remote Sens 50(5):1354–1366CrossRefGoogle Scholar
  3. 3.
    Kerr Y, Waldteufel P, Richaume P, Davenport I, Ferrazzoli P, Wigneron J-P (2010) SMOS level 2 processor soil moisture ATBD. Toulouse SO-TN-ESL-SM-GS-0001, 24/10/2010, 2010Google Scholar
  4. 4.
    de Rosnay P, Calvet JC, Kerr Y, Wigneron JP, Lemaitre F, Escorihuela MJ, Sabater JM, Saleh K, Barrie JL, Bouhours G, Coret L, Cherel G, Dedieu G, Durbe R, Fntz NED, Froissard F, Hoedjes J, Kruszewski A, Lavenu F, Suquia D, Waldteufel P (2006) SMOSREX: a long term field campaign experiment for soil moisture and land surface processes remote sensing. Remote Sens Environ 102(3–4):377–389CrossRefGoogle Scholar
  5. 5.
    Grant JP, Wigneron JP, Van de Griend AA, Kruszewski A, Sobjaerg SS, Skou N (2007) A field experiment on microwave forest radiometry: L-band signal behaviour for varying conditions of surface wetness. Remote Sens Environ 109(1):10–19CrossRefGoogle Scholar
  6. 6.
    Guglielmetti M, Schwank M, Matzler C, Oberdorster C, Vanderborght J, Fluhler H (2008) FOSMEX: forest soil moisture experiments with microwave radiometry. IEEE Trans Geosci Remote Sens 46(3):727–735CrossRefGoogle Scholar
  7. 7.
    Juglea S, Kerr Y, Mialon A, Wigneron JP, Lopez-Baeza E, Cano A, Albitar A, Millan-Scheiding C, Antolin MC, Delwart S (2010) Modelling soil moisture at SMOS scale by use of a SVAT model over the Valencia anchor station. Hydrol Earth Syst Sci 14(5):831–846CrossRefGoogle Scholar
  8. 8.
    Panciera R, Walker JP, Kalma JD, Kim EJ, Hacker JM, Merlin O, Berger M, Skou N (2008) The NAFE’05/CoSMOS data set: toward SMOS soil moisture retrieval, downscaling, and assimilation. IEEE Trans Geosci Remote Sens 46(3):736–745CrossRefGoogle Scholar
  9. 9.
    Saleh K, Kerr YH, Richaume P, Escorihuela MJ, Panciera R, Delwart S, Boulet G, Maisongrande P, Walker JP, Wursteisen P, Wigneron JP (2009) Soil moisture retrievals at L-band using a two-step inversion approach (COSMOS/NAFE’05 Experiment). Remote Sens Environ 113(6):1304–1312CrossRefGoogle Scholar
  10. 10.
    Wigneron JP, Waldteufel P, Chanzy A, Calvet JC, Kerr Y (2000) Two-dimensional microwave interferometer retrieval capabilities over land surfaces (SMOS mission). Remote Sens Environ 73(3):270–282CrossRefGoogle Scholar
  11. 11.
    Merlin O, Walker JP, Panciera R, Escorihuela MJ, Jackson TJ (2009) Assessing the SMOS Soil Moisture Retrieval Parameters With High-Resolution NAFE’06 Data. IEEE Geosci Remote Sens Lett 6(4):635–639CrossRefGoogle Scholar
  12. 12.
    Hasan S, Montzka C, Rüdiger C, Ali M, Bogena H, Vereecken H (2014) Soil moisture retrieval from airborne L-band passive microwave using high resolution multispectral data. ISPRS J Photogrammetry Remote Sens 91:59–71CrossRefGoogle Scholar
  13. 13.
    Montzka C, Bogena HR, Weihermüller L, Jonard F, Bouzinac C, Kainulainen J, Balling JE, Loew A, Dall’Amico JT, Rouhe E, Vanderborght J, Vereecken H (2013) Brightness temperature and soil moisture validation at different scales during the SMOS validation campaign in the Rur and Erft catchments, Germany. IEEE Trans Geosci Remote Sens 51(3):1728–1743. doi:10.1109/TGRS.2012.2206031 CrossRefGoogle Scholar
  14. 14.
    Zacharias S, Bogena H, Samaniego L, Mauder M, Fuss R, Putz T, Frenzel M, Schwank M, Baessler C, Butterbach-Bahl K, Bens O, Borg E, Brauer A, Dietrich P, Hajnsek I, Helle G, Kiese R, Kunstmann H, Klotz S, Munch JC, Papen H, Priesack E, Schmid HP, Steinbrecher R, Rosenbaum U, Teutsch G, Vereecken H (2011) A network of terrestrial environmental observatories in Germany. Vadose Zone J 10(3):955–973. doi:10.2136/Vzj2010.0139 CrossRefGoogle Scholar
  15. 15.
    Bogena H, Kunkel R, Puetz T, Vereecken H, Kruger E, Zacharias S, Dietrich P, Wollschlager U, Kunstmann H, Papen H, Schmid HP, Munch JC, Priesack E, Schwank M, Bens O, Brauer A, Borg E, Hajnsek I (2012) TERENO—long-term monitoring network for terrestrial environmental research. Hydrol Wasserbewirts 56(3):138–143Google Scholar
  16. 16.
    Bogena HR, Herbst M, Huisman JA, Rosenbaum U, Weuthen A, Vereecken H (2010) Potential of wireless sensor networks for measuring soil water content variability. Vadose Zone J 9:1–12CrossRefGoogle Scholar
  17. 17.
    Al Bitar A, Leroux D, Kerr YH, Merlin O, Richaume P, Sahoo A, Wood EF (2012) Evaluation of SMOS soil moisture products over continental U.S. using the SCAN/SNOTEL network. IEEE Trans Geosci Remote Sens 50(5):1572–1586. doi:10.1109/TGRS.2012.2186581
  18. 18.
    Jasper K, Calanca P, Fuhrer J (2006) Changes in summertime soil water patterns in complex terrain due to climatic change. J Hydrol 327(3–4):550–563. doi:10.1016/j.jhydrol.2005.11.061 CrossRefGoogle Scholar
  19. 19.
    Oliva R, Daganzo-Eusebio E, Kerr YH, Mecklenburg S, Nieto S, Richaume P, Gruhier C (2012) SMOS radio frequency interference scenario: status and actions taken to improve the RFI environment in the 1400–1427 Mhz band. IEEE Trans Geosci Remote Sens 50(5):1427–1439CrossRefGoogle Scholar
  20. 20.
    Aksoy M, Johnson JT (2013) A study of SMOS RFI over North America. IEEE Geosci Remote Sens Lett 10(3):515–519. doi:10.1109/LGRS.2012.2211993 CrossRefGoogle Scholar
  21. 21.
    Mironov VL, Dobson MC, Kaupp VH, Komarov SA, Kleshchenko VN (2004) Generalized refractive mixing dielectric model for moist soils. IEEE Trans Geosci Remote Sens 42(4):773–785. doi:10.1109/Tgrs.2003.823288 CrossRefGoogle Scholar
  22. 22.
    Dobson MC, Ulaby FT, Hallikainen MT, Elrayes MA (1985) Microwave dielectric behavior of wet soil. 2. Dielectric mixing models. IEEE Trans Geosci Remote Sens 23(1):35–46. doi:10.1109/Tgrs.1985.289498 CrossRefGoogle Scholar
  23. 23.
    Montzka C, Grant JP, Moradkhani H, Franssen HJH, Weihermuller L, Drusch M, Vereecken H (2013) Estimation of radiative transfer parameters from L-band passive microwave brightness temperatures using advanced data assimilation. Vadose Zone J 12(3). doi:10.2136/Vzj2012.0040
  24. 24.
    Bauer J, Weihermuller L, Huisman JA, Herbst M, Graf A, Sequaris JM, Vereecken H (2012) Inverse determination of heterotrophic soil respiration response to temperature and water content under field conditions. Biogeochemistry 108(1–3):119–134CrossRefGoogle Scholar
  25. 25.
    Weihermüller L, Huisman JA, Lambot S, Herbst M, Vereecken H (2007) Mapping the spatial variation of soil water content at the field scale with different ground penetrating radar techniques. J Hydrol 340(3–4):205–216CrossRefGoogle Scholar
  26. 26.
    Kerr YH (2007) Soil moisture from space: where are we? Hydrogeol J 15(1):117–120CrossRefGoogle Scholar
  27. 27.
    Wigneron JP, Kerr Y, Waldteufel P, Saleh K, Escorihuela MJ, Richaume P, Ferrazzoli P, de Rosnay P, Gurney R, Calvet JC, Grant JP, Guglielmetti M, Hornbuckle B, Matzler C, Pellarin T, Schwank M (2007) L-band microwave emission of the biosphere (L-MEB) model: description and calibration against experimental data sets over crop fields. Remote Sens Environ 107(4):639–655CrossRefGoogle Scholar
  28. 28.
    Iman RL, Helton JC, Campbell JE (1981) An approach to sensitivity analysis of computer-models.1. Introduction, input variable selection and preliminary variable assessment. J Qual Technol 13(3):174–183Google Scholar
  29. 29.
    Moradkhani H, Hsu KL, Gupta H, Sorooshian S (2005) Uncertainty assessment of hydrologic model states and parameters: sequential data assimilation using the particle filter. Water Resour Res 41(5):W05012. doi:10.1029/2004WR003604 CrossRefGoogle Scholar
  30. 30.
    Rötzer K, Montzka C, Bogena H, Wagner W, Kerr YH, Kidd R, Vereecken H (2014) Catchment scale validation of SMOS and ASCAT soil moisture products using hydrological modeling and temporal stability analysis. J Hydrol 519, 934–946. doi:10.1016/j.jhydrol.2014.07.065

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Carsten Montzka
    • 1
  • Cho Miltin Mboh
    • 1
  • Kathrina Rötzer
    • 1
  1. 1.Institute of Bio- and Geosciences: Agrosphere (IBG-3), Forschungszentrum JülichJülichGermany

Personalised recommendations