Enhancing Spatial Perception and User Experience in Video Games with Volumetric Shadows

  • Tuukka M. Takala
  • Perttu Hämäläinen
  • Mikael Matveinen
  • Taru Simonen
  • Jari Takatalo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8433)


In this paper, we investigate the use of volumetric shadows for enhancing three-dimensional perception and action in third-person motion games. They offer an alternative to previously studied cues and visual guides. Our preliminary survey revealed that from the games that require Kinect, 37 % rely primarily on a third-person view and 9 % on a first-person view. We conducted a user study where 30 participants performed object reaching, interception, and aiming tasks in six different graphical modes of a video game that was controlled using a Kinect sensor and PlayStation Move controllers. The study results indicate that different volumetric shadow cues can affect both the user experience and the gameplay performance positively or negatively, depending on the lighting setup. Qualitative user experience analysis shows that playing was found to be most easy and fluent in a typical virtual reality setting with stereo rendering and flat surface shadows.


Depth perception Depth cues Stereoscopy Games 3D user interface Game experience Volumetric shadows 



This work was supported by Finnish Doctoral Program in User-Centered Information Technology (UCIT) and Helsinki Institute of Science and Technology Studies (HIST).


  1. 1.
    Cutting, J.E., Vishton, P.M.: Perceiving layout and knowing distances: the integration, relative potency, and contextual use of different information about depth. Percept. space motion 5, 69–117 (1995)CrossRefGoogle Scholar
  2. 2.
    Hubona, G.S., Wheeler, P.N., Shirah, G.W., Brandt, M.: The relative contributions of stereo, lighting, and background scenes in promoting 3D depth visualization. ACM Trans. Comput. Hum. Interact. 6, 214–242 (1999)CrossRefGoogle Scholar
  3. 3.
    Wanger, L.R., Ferwerda, J.A., Greenberg, D.P.: Perceiving spatial relationships in computer-generated images. IEEE Comput. Graph. Appl. 12, 44–58 (1992)CrossRefGoogle Scholar
  4. 4.
    Heinen, T., Vinken, P.M.: Monocular and binocular vision in the performance of a complex skill. J. Sports Sci. Med. 10, 520–527 (2011)Google Scholar
  5. 5.
    Laby, D.M., Kirschen, D.G., Pantall, P.: The visual function of olympic-level athletes—an initial report. Eye Contact Lens Sci. Clin. Pract. 37, 116–122 (2011)CrossRefGoogle Scholar
  6. 6.
    Bennett, S., van der Kamp, J., Savelsbergh, G.J.P., Davids, K.: Discriminating the role of binocular information in the timing of a one-handed catch. Exp. Brain Res. 135, 341–347 (2000)CrossRefGoogle Scholar
  7. 7.
    Van Hof, P., van der Kamp, J., Savelsbergh, G.J.P.: Three- to eight-month-old infants’ catching under monocular and binocular vision. Hum. Mov. Sci. 25, 18–36 (2006)CrossRefGoogle Scholar
  8. 8.
    Mazyn, L., Lenoir, M., Montagne, G., Delaey, C., Savelsbergh, G.: Stereo vision enhances the learning of a catching skill. Exp. Brain Res. 179, 723–726 (2007)CrossRefGoogle Scholar
  9. 9.
    Bulson, R., Ciuffreda, K.J., Ludlam, D.P.: Effect of binocular vs. monocular viewing on golf putting accuracy. J. Behav. Optom. 20, 31–34 (2009)Google Scholar
  10. 10.
    Wanger, L.R.: The effect of shadow quality on the perception of spatial relationships in computer generated imagery. In: Proceedings of 1992 Symposium on Interactive 3D Graphics, pp. 39–42 (1992)Google Scholar
  11. 11.
    Hubona, G.S., Shirah, G.W., Jennings, D.K.: The effects of cast shadows and stereopsis on performing computer-generated spatial tasks. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 34, 483–493 (2004)CrossRefGoogle Scholar
  12. 12.
    Glueck, M., Crane, K., Anderson, S., Rutnik, A., Khan, A.: Multiscale 3D reference visualization. In: Proceedings of the 2009 Symposium on Interactive 3D Graphics and Games, pp. 225–232 (2009)Google Scholar
  13. 13.
    Teather, R.J., Stuerzlinger, W.: Guidelines for 3D positioning techniques. In: Proceedings of the Conference on Future Play, pp. 61–68. ACM, New York (2007)Google Scholar
  14. 14.
    Boritz, J., Booth, K.S.: A study of interactive 3D point location in a computer simulated virtual environment. In: Proceedings of the ACM Symposium on Virtual Reality Software and Technology, pp. 181–187. ACM, New York (1997)Google Scholar
  15. 15.
    Arthur, K.W., Booth, K.S., Ware, C.: Evaluating 3D task performance for fish tank virtual worlds. ACM Trans. Inf. Syst. 11, 239–265 (1993)CrossRefGoogle Scholar
  16. 16.
    Schmidt, R.A., Wrisberg, C.N.: Motor Learning and Performance. Human Kinetics Publishers, Champaign (2004)Google Scholar
  17. 17.
    Schneider, W., Shiffrin, R.M.: Controlled and automatic human information processing: I. Detection, search, and attention. Psychol. Rev. 84, 1 (1977)CrossRefGoogle Scholar
  18. 18.
    Oshita, M.: Motion-capture-based avatar control framework in third-person view virtual environments. In: Proceedings of the ACM SIGCHI International Conference on Advances in Computer Entertainment Technology, p. 2. ACM (2006)Google Scholar
  19. 19.
    Wikipedia: List of Kinect games. http://en.wikipedia.org/wiki/Kinect_games
  20. 20.
    Cruz-Neira, C., Sandin, D.J., DeFanti, T.A.: Surround-screen projection-based virtual reality: the design and implementation of the CAVE. In: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, pp. 135–142 (1993)Google Scholar
  21. 21.
    Nishita, T., Miyawaki, Y., Nakamae, E.: A shading model for atmospheric scattering considering luminous intensity distribution of light sources. In: ACM SIGGRAPH Computer Graphics, pp. 303–310 (1987)Google Scholar
  22. 22.
    Wyman, C., Ramsey, S.: Interactive volumetric shadows in participating media with single-scattering. In: IEEE Symposium on Interactive Ray Tracing, pp. 87–92 (2008)Google Scholar
  23. 23.
    Cerezo, E., Pérez, F., Pueyo, X., Seron, F.J., Sillion, F.X.: A survey on participating media rendering techniques. Vis. Comput. 21, 303–328 (2005)CrossRefGoogle Scholar
  24. 24.
    Ament, M., Sadlo, F., Weiskopf, D.: Ambient volume scattering. IEEE Trans. Vis. Comput. Graph. 19, 2936–2945 (2013)CrossRefGoogle Scholar
  25. 25.
    Yang, F., Li, Q., Xiang, D., Cao, Y., Tian, J.: A versatile optical model for hybrid rendering of volume data. IEEE Trans. Vis. Comput. Graph. 18, 925–937 (2012)CrossRefGoogle Scholar
  26. 26.
    Ropinski, T., Doring, C., Rezk-Salama, C.: Interactive volumetric lighting simulating scattering and shadowing. In: IEEE Pacific Visualization Symposium, pp. 169–176 (2010)Google Scholar
  27. 27.
    Bruckner, S., Groller, M.E.: Enhancing depth-perception with flexible volumetric halos. IEEE Trans. Vis. Comput. Graph. 13, 1344–1351 (2007)CrossRefGoogle Scholar
  28. 28.
    Tao, Y., Lin, H., Dong, F., Clapworthy, G.: Opacity volume based halo generation for enhancing depth perception. In: 2011 12th International Conference on Computer-Aided Design and Computer Graphics (CAD/Graphics), pp. 418–422. IEEE (2011)Google Scholar
  29. 29.
    Lindemann, F., Ropinski, T.: About the influence of illumination models on image comprehension in direct volume rendering. IEEE Trans. Vis. Comput. Graph. 17, 1922–1931 (2011)CrossRefGoogle Scholar
  30. 30.
    Boucheny, C., Bonneau, G.-P., Droulez, J., Thibault, G., Ploix, S.: A perceptive evaluation of volume rendering techniques. ACM Trans. Appl. Percept. (TAP) 5, 23 (2009)Google Scholar
  31. 31.
    Šoltészová, V., Patel, D., Viola, I.: Chromatic shadows for improved perception. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Non-Photorealistic Animation and Rendering, pp. 105–116. ACM (2011)Google Scholar
  32. 32.
    Wang, L., Kaufman, A.E.: Lighting system for visual perception enhancement in volume rendering. IEEE Trans. Vis. Comput. Graph. 19, 67–80 (2013)CrossRefMATHGoogle Scholar
  33. 33.
    Knez, I., Niedenthal, S.: Lighting in digital game worlds: effects on affect and play performance. CyberPsychology Behav. 11, 129–137 (2008)CrossRefGoogle Scholar
  34. 34.
    El-Nasr, M.S., Horswill, I.: Automating lighting design for interactive entertainment. Comput. Entertain. 2, 15 (2004)CrossRefGoogle Scholar
  35. 35.
    Lombard, M., Jones, M.T.: Identifying the (tele)presence literature. PsychNology J. 5, 197–206 (2007)Google Scholar
  36. 36.
    IJsselsteijn, W., de Ridder, H., Freeman, J., Avons, S.E., Bouwhuis, D.: Effects of stereoscopic presentation, image motion, and screen size on subjective and objective corroborative measures of presence. Presence Teleoperators Virtual Environ. 10, 298–311 (2001)CrossRefGoogle Scholar
  37. 37.
    Takatalo, J., Kawai, T., Kaistinen, J., Nyman, G., Häkkinen, J.: User experience in 3D stereoscopic games. Media Psychol. 14, 387–414 (2011)CrossRefGoogle Scholar
  38. 38.
    Snow, M.P., Williges, R.C.: Empirical Models based on free-modulus magnitude estimation of perceived presence in virtual environments. Hum. Factors J. Hum. Factors Ergon. Soc. 40, 386–402 (1998)CrossRefGoogle Scholar
  39. 39.
    International Society for Presence Research: The Concept of Presence: Explication Statement. http://ispr.info/
  40. 40.
    Takatalo, J., Nyman, G., Laaksonen, L.: Components of human experience in virtual environments. Comput. Hum. Behav. 24, 1–15 (2008)CrossRefGoogle Scholar
  41. 41.
    Csikszentmihalyi, M.: Beyond Boredom and Anxiety. Jossey-Bass Publishers, San Francisco (1975)Google Scholar
  42. 42.
    Takatalo, J., Häkkinen, J.: Profiling user experience in digital games with the flow model. In: Proceedings of the Nordic Conference on Human-Computer Interaction (NordiCHI 14), Helsinki, Finland, pp. 26–30 (2014)Google Scholar
  43. 43.
    Ryan, R., Rigby, C., Przybylski, A.: The motivational pull of video games: a self-determination theory approach. Motiv. Emot. 30, 344–360 (2006)CrossRefGoogle Scholar
  44. 44.
    Takala, T.M., Pugliese, R., Rauhamaa, P., Takala, T.: Reality-based user interface system (RUIS). In: Proceedings of the IEEE Symposium on 3D User Interfaces 2011, pp. 141–142 (2011)Google Scholar
  45. 45.
    Dey, A.: Incomplete Block Designs. World Scientific Publishing, Singapore (2010)CrossRefMATHGoogle Scholar
  46. 46.
    Takatalo, J., et al.: Psychologically-based and content-oriented experience in entertainment virtual environments (2011)Google Scholar
  47. 47.
    Takatalo, J., Häkkinen, J., Kaistinen, J., Nyman, G.: User experience in digital games: differences between laboratory and home. Simul. Gaming 42, 656–673 (2010)Google Scholar
  48. 48.
    Särkelä, H., Takatalo, J., May, P., Laakso, M., Nyman, G.: The movement patterns and the experiential components of virtual environments. Int. J. Hum Comput Stud. 67, 787–799 (2009)CrossRefGoogle Scholar
  49. 49.
    Takatalo, J., Häkkinen, J., Kaistinen, J., Nyman, G.: Presence, involvement, and flow in digital games. In: Bernhaupt, R. (ed.) Evaluating User Experience in Games, pp. 23–46. Springer, London (2010)CrossRefGoogle Scholar
  50. 50.
    Greenacre, M.J.: Theory and applications of correspondence analysis. Academic press, London (1984)MATHGoogle Scholar
  51. 51.
    Lang, P.J.: Behavioral treatment and bio-behavioral assessment: Computer applications. In: Sidowski, J.B., Johnson, J.H., Williams, T.A. (eds.) Technology in Mental Health Care Delivery Systems, pp. 119–137. Ablex Publishing Corporation, Norwood (1980)Google Scholar
  52. 52.
    Laméris Ootech: TNO Test for Stereoscopic Vision. Netherlands Organization for Applied Scientific Research (1972)Google Scholar
  53. 53.
    Schor, C.M., Wood, I.: Disparity range for local stereopsis as a function of luminance spatial frequency. Vis. Res. 23, 1649–1654 (1983)CrossRefGoogle Scholar
  54. 54.
    Ratan, R.: Self-presence, explicated: body, emotion, and identity. In: Luppicini, R. (ed.) Handbook of Research on Technoself: Identity in a Technological Society, p. 322. Information Science Reference, Hershey (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Tuukka M. Takala
    • 1
  • Perttu Hämäläinen
    • 1
  • Mikael Matveinen
    • 1
  • Taru Simonen
    • 1
  • Jari Takatalo
    • 2
  1. 1.Department of Media TechnologyAalto UniversityEspooFinland
  2. 2.POEM Research GroupUniversity of HelsinkiHelsinkiFinland

Personalised recommendations