Designing for Hover- and Force-Enriched Touch Interaction

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8433)

Abstract

As touch-based interfaces become more popular, there are attempts to enhance the touch interface by making the interface more sensitive to the finger. This means that touch surfaces not only sense the location of a finger contact, but also other properties such as a finger hover or the applied force. In this chapter, we summarize the properties of hover- and force-enriched touch and what we should consider to design rich-touch interactions based on the findings from previous works. We present design strategies for rich-touch interactions and example applications, which we developed with the novel touchpad prototype that is capable of measuring a finger hover as well as the finger force applied to the screen. We measured the performance of using rich touch and collected users’ feedback through the experiments.

Keywords

Hover touch Force touch Interaction design 

References

  1. 1.
    Annett, M., Grossman, T., Wigdor, D., Fitzmaurice G.: Medusa: a proximity-aware multi-touch tabletop. In: Proceedings of the UIST 2011, pp. 337–346. ACM (2011)Google Scholar
  2. 2.
    Apple, Magic Trackpad. http://www.apple.com/magictrackpad/
  3. 3.
    Banerjee, A., Burstyn, J., Girouard, A., Vertegaal, R.: Pointable: an in-air pointing technique to manipulate out-of-reach targets on tabletops. In: Proceedings of the ITS 2011, pp. 11–20. ACM Press (2011)Google Scholar
  4. 4.
    Benko, H., Wilson, A.D., Baudisch, P.: Precise selection techniques for multi-touch screens. In: Proceedings of the CHI 2006, pp. 1263–1272. ACM Press (2006)Google Scholar
  5. 5.
    Benko, H., Saponas, T.S., Morris, D., Tan, D.: Enhancing input on and above the interactive surface with muscle sensing. In: Proceedings of the ITS 2009, pp. 93–100. ACM Press. (2009)Google Scholar
  6. 6.
    Choi, S., Han, J., Lee, G., Lee, N., Lee, W.: RemoteTouch: touch-screen-like interaction in the TV viewing environment. In: Proceedings of the CHI 2011, pp. 393–402. ACM Press (2011)Google Scholar
  7. 7.
    Choi, S., Han, J., Kim, S., Heo, S., Lee, G.: ThickPad: a hover-tracking touchpad for a laptop. In: Adjunct. Proceedings of the UIST 2011, pp. 15–16. ACM Press (2011)Google Scholar
  8. 8.
    Choi, S., Gu, J., Han, J., Lee, G.: Area gestures for a laptop computer enabled by a hover-tracking touchpad. In: Proceedings of the APCHI 2012, pp. 119–124. ACM Press (2012)Google Scholar
  9. 9.
    Cypress Semiconductor, TrueTouch. http://www.cypress.com/touch/
  10. 10.
    Grossman, T., Hinckley, K., Baudisch, P., Agrawala, M., Balakrishnan, R.: Hover widgets: using the tracking state to extend the capabilities of pen-operated devices. In: Proceedings of the CHI 2006, pp. 861–870. ACM Press (2006)Google Scholar
  11. 11.
    Gu, J., Heo, S., Han, J., Kim, S., Lee, G.: LongPad: a touchpad using the entire area below the keyboard of a laptop computer. In: Proceedings of the CHI 2013, pp. 1421–1430. ACM Press (2013)Google Scholar
  12. 12.
    Han, J., Choi, S., Heo, S., Lee, G.: Optical touch sensing based on internal scattering in touch surface. Electron. Lett. 48(22), 1420–1422 (2012)CrossRefGoogle Scholar
  13. 13.
    Han, J., Gu, J., Lee, G.: Trampoline: a double-sided elastic touch device for creating reliefs. In: Proceedings of the UIST 2014, pp. 383–388. ACM Press (2014)Google Scholar
  14. 14.
    Han, S., Park, J.: A study on touch & hover based interaction for zooming. In: Extended Abstracts, Proceedings of the CHI 2012, pp. 2183–2188. ACM Press (2012)Google Scholar
  15. 15.
    Harrison, C., Dey, A.K.: Lean and zoom: proximity-aware user interface and content magnification. In: Proceedings of the CHI 2008, pp. 507–510. ACM Press (2008)Google Scholar
  16. 16.
    Harrison, C., Hudson, S.: Using shear as a supplemental two-dimensional input channel for rich touchscreen interaction. In: Proceedings of the CHI 2012, pp. 3149–3152. ACM Press (2012)Google Scholar
  17. 17.
    Heo, S., Lee, G.: Forcetap: extending the input vocabulary of mobile touch screens by adding tap gestures. In: Proceedings of the MobileHCI 2011, pp. 113–122. ACM Press (2011)Google Scholar
  18. 18.
    Heo, S., Lee, G.: Force gestures: augmenting touch screen gestures with normal and tangential forces. In: Proceedings of the UIST 2011, pp. 621–626. ACM Press (2011)Google Scholar
  19. 19.
    Heo, S., Lee, G.: ForceDrag: using pressure as a touch input modifier. In: Proceedings of the OzCHI 2012, pp. 204–207. ACM Press (2012)Google Scholar
  20. 20.
    Heo, S., Lee, G.: Indirect shear force estimation for multi-point shear force operations. In: Proceedings of the CHI 2013, pp. 281–284. ACM Press (2013)Google Scholar
  21. 21.
    Heo, S., Han, J., Lee, G.: Designing rich touch interaction through proximity and 2.5D force sensing touchpad. In: Proceedings of the OzCHI 2013, pp. 401–404. ACM Press (2013)Google Scholar
  22. 22.
    Herot, C., Weinzapfel, G.: One-point touch input of vector information for computer displays. In: Proceedings of the SIGGRAPH 1978, pp. 210–216. ACM Press (1978)Google Scholar
  23. 23.
    Hilliges, O., Izadi, S., Wilson, A.D., Hodges, S., Garcia-Mendoza, A., Butz, A.: Interactions in the air: adding further depth to interactive tabletops. In: Proceedings of the UIST 2009, pp. 139–148. ACM (2009)Google Scholar
  24. 24.
    Hinckley, K., Song, H.: Sensor synaesthesia: touch in motion, and motion in touch. In: Proceedings of the CHI 2011, pp. 801–810. ACM Press (2011)Google Scholar
  25. 25.
    Hirsch, M., Lanman, D., Holtzman, H., Raskar, R.: BiDi screen: a thin, depth-sensing LCD for 3D interaction using light fields. ACM Trans Graph 28(5), 159:1–159:9 (2009)CrossRefGoogle Scholar
  26. 26.
    Leap Motion Controller, Leap Motion. https://www.leapmotion.com/product/
  27. 27.
    Lee, B., Lee, H., Lim, S.-C., Lee, H., Han, S., Park, J.: Evaluation of human tangential force input performance. In: Proceedings of the CHI 2012, pp. 3121–3130. ACM Press (2012)Google Scholar
  28. 28.
    Lee, G., Lee, S., Bang, W., Kim, Y.: A TV pointing device using LED directivity. In: IEEE International Conference on Consumer Electronics (ICCE 2011), pp. 619–620. IEEE Press (2011)Google Scholar
  29. 29.
  30. 30.
    Marquardt, N., Jota, R., Greenberg, S., Jorge, J.A.: The continuous interaction space: interaction techniques unifying touch and gesture on and above a digital surface. In: Campos, P., Graham, N., Jorge, J., Nunes, N., Palanque, P., Winckler, M. (eds.) INTERACT 2011, Part III. LNCS, vol. 6948, pp. 461–476. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  31. 31.
    Microsoft Research, Project Gustav. http://research.microsoft.com/en-us/projects/gustav/
  32. 32.
    Minsky, M.: Manipulating simulated objects with real-world gestures using a force and position sensitive screen. In: Proceedings of the 11th Annual Conference on Computer Graphics and Interactive Techniques, pp. 195–203. ACM Press (1984)Google Scholar
  33. 33.
    Miyaki, T., Rekimoto, J.: GraspZoom: zooming and scrolling control model for single-handed mobile interaction. In: Proceedings of the MobileHCI 2009, p. 11. ACM Press (2009)Google Scholar
  34. 34.
    Ramos, G., Boulos, M., Balakrishnan, R.: Pressure widgets. In: Proceedings of the CHI 2004, pp. 487–494. ACM Press (2004)Google Scholar
  35. 35.
    Ramos, G., Balakrishnan, R.: Pressure marks. In: Proceedings of the CHI 2007, pp. 1375–1384. ACM Press (2007)Google Scholar
  36. 36.
    Rekimoto, J.: SmartSkin: an infrastructure for free hand manipulation on interactive surfaces. In: Proceedings of the CHI 2002, pp. 113–120. ACM Press (2002)Google Scholar
  37. 37.
    Rendl, C., Greindl, P., Probst, K., Behrens, M., Haller, M.: Presstures: exploring pressure-sensitive multi-touch gestures on trackpads. In: Proceedings of the CHI 2014, pp. 431–434. ACM Press (2014)Google Scholar
  38. 38.
    Research In Motion, BlackBerry Storm 2. http://worldwide.blackberry.com/blackberrystorm2/storm
  39. 39.
    Rosenberg, I., Perlin, K.: The UnMousePad: an interpolating multi-touch force-sensing input pad. ACM Trans. Graph. (TOG). 28(3), 65:1–65:9 (2009). ACM PressCrossRefGoogle Scholar
  40. 40.
  41. 41.
  42. 42.
    Takeoka, Y., Miyaki, T., Rekimoto, J.: Z-touch: an infrastructure for 3d gesture interaction in the proximity of tabletop surfaces. In: Proceedings of the ITS 2010, pp. 91–94. ACM Press (2010)Google Scholar
  43. 43.
    Tsukada, Y., Hoshino, T.: Layered touch panel: the input device with two touch panel layers. In: Extended Abstracts, Proceedings of the CHI 2002, pp. 584–585. ACM Press (2002)Google Scholar
  44. 44.
  45. 45.
    Westerman, W.: Hand Tracking, Finger Identification and Chordic Manipulation on a Multi-Touch Surface. Ph.D. thesis, University of Delaware (1999)Google Scholar
  46. 46.
    Wilson, A.D., Benko, H.: Combining multiple depth cameras and projectors for interactions on, above and between surfaces. In: Proceedings of the UIST 2010. ACM Press (2010)Google Scholar
  47. 47.
    Wu, M., Shen, C., Ryall, K., Forlines, C., Balakrishnan, R.: Gesture registration, relaxation, and reuse for multi-point direct-touch surfaces. In: Proceedings of the TableTop 2006, p. 8. IEEE Press (2006)Google Scholar
  48. 48.
    Yu, C., Tan, X., Shi, Y., Shi, Y.: Air finger: enabling multi-scale navigation by finger height above the surface. In: Proceedings of the UbiComp 2011, pp. 495–496. ACM Press (2011)Google Scholar
  49. 49.
    Zhai, S.: Human Performance in Six Degree of Freedom Input Control. Ph.D. thesis, University of Toronto (1995)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Computer ScienceKAISTDaejeonRepublic of Korea

Personalised recommendations