Advertisement

Organic Semiconductors for Field-Effect Transistors

  • Weifeng Zhang
  • Gui YuEmail author
Chapter
Part of the Lecture Notes in Chemistry book series (LNC, volume 91)

Abstract

An important application of organic semiconductors is to fabricate organic field-effect transistors (OFETs) which are essential building blocks for the next generation of organic circuits. In terms of molecular size or molecular weight, organic semiconductors can be divided into small-molecule and polymer semiconductors, and thus their corresponding OFETs can also be categorized into organic small molecule OFETs and polymer field-effect transistors (PFETs). On the basis of the main charge carriers transporting in OFET channels, organic semiconductors can be further divided into p-type, n-type, and ambipolar semiconducting materials. According to the characteristic of the organic semiconductors, the OFETs can be classified into two types: organic thin film transistors (OTFTs) and organic single crystal transistors. In any kind of OFET devices, organic semiconductor materials are the core; their properties determine the performance of the electronic devices. Therefore, the design and synthesis of high performance organic semiconductor materials are the basis and premise of the wide application of OFET devices. In the past few decades, great progress has been made in developing organic semiconductors. Besides organic semiconducting materials, there are many other factors influencing the performance of OFETs including device configuration, processing technique, and other devices physical factors, etc. In the following, a brief review of the development of p-type, n-type, ambipolar organic semiconductors and their field-effect properties is given. The history, mechanism, configuration, and fabrication methods of OFET devices and main performance influencing factors of OFETs are also introduced.

Keywords

Organic semiconductors p-Type materials n-Type materials Ambipolar transport Field-effect transistors Mobilities 

References

  1. 1.
    Brown AR, Pomp A, Hart CM, Deleeuw DM (1995) Logic gates made from polymer transistors and their use in ring oscillators. Science 270:972–974Google Scholar
  2. 2.
    Crone B, Dodabalapur A, Lin YY, Filas RW, Bao Z, LaDuca A, Sarpeshkar R, Katz HE, Li W (2000) Large-scale complementary integrated circuits based on organic transistors. Nature 403:521–523Google Scholar
  3. 3.
    Tee B, Wang C, Allen R, Bao Z (2012) An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nat Nanotech 7:825–832Google Scholar
  4. 4.
    Murphy AR, Fréchet JMJ (2007) Organic semiconducting oligomers for use in thin film transistors. Chem Rev 107:1066–1096Google Scholar
  5. 5.
    Anthony JE (2006) Functionalized acenes and heteroacenes for organic electronics. Chem Rev 106:5028–5048Google Scholar
  6. 6.
    Wang C, Dong H, Hu W, Liu Y, Zhu D (2012) Semiconducting π-conjugated systems in field-effect transistors: a material odyssey of organic electronics. Chem Rev 112:2208–2267Google Scholar
  7. 7.
    Gelinck GH, Geuns TCT, de Leeuw DM (2000) High-performance all-polymer integrated circuits. Appl Phys Lett 77:1487–1498Google Scholar
  8. 8.
    Dimitrakopoulos D, Malenfant PRL (2002) Organic thin film transistors for large area electronics. Adv Mater 14:99–117Google Scholar
  9. 9.
    Horowitz G (2003) Tunneling current in polycrystalline organic thin-film transistors. Adv Funct Mater 13:53–60Google Scholar
  10. 10.
    Campbell IH, Smith L (2001) Physics of organic electronic devices. Solid State Phys 55:1–334Google Scholar
  11. 11.
    Lilienfeld JE (1930) Method and apparatus for controlling electric currents. US 1745175Google Scholar
  12. 12.
    Atalla MM, Tannenbaum E, Scheibner EJ (1959) Stabilization of silicon surfaces by thermally grown oxides. Bell Syst Tech J 38:749–783Google Scholar
  13. 13.
    Ebisawa F, Kurokawa T, Nara S (1983) Electrical properties of polyacetylene/polysiloxane interface. J Appl Phys 54:3255–3259Google Scholar
  14. 14.
    Tsumura A, Koezuka H, Ando T (1986) Macromolecular electronic device: field-effect transistor with a polythiophene thin film. Appl Phys Lett 49:1210–1212Google Scholar
  15. 15.
    Assadi A, Svensson C, Willander M, Inganas O (1988) Field-effect mobility of poly(3-hexylthiophene). Appl Phys Lett 53:195–197Google Scholar
  16. 16.
    Zaumseil J, Sirringhaus H (2007) Electron and ambipolar transport in organic field-effect transistors. Chem Rev 107:1296–1323Google Scholar
  17. 17.
    Newman CR, Frisbie CD, da Silva Filho DA, Bredas JL, Ewbank PC, Mann KR (2004) Introduction to organic thin film transistors and design of n-channel organic semiconductors. Chem Mater 16:4436–4451Google Scholar
  18. 18.
    Ahles M, Schmechel R, Seggern HV (2004) n-Type organic field-effect transistor based on interface-doped pentacene. Appl Phys Lett 85:4499–4501Google Scholar
  19. 19.
    Singh TB, Senkarabacak P, Sariciftci NS, Tanda A, Lackner C, Hagelauer R, Horowitz G (2006) Organic inverter circuits employing ambipolar pentacene field-effect transistors. Appl Phys Lett 89:033512Google Scholar
  20. 20.
    Takimiya K, Ebata H, Sakamoto K, Izawa T, Otsubo T, Kunugi Y (2006) 2,7-Diphenyl[1]benzothieno[3,2-b]benzothiophene. A new organic semiconductor for air-stable organic field-effect transistors with mobilities up to 2.0 cm2 V−1 s−1. J Am Chem Soc 128:12604–12605Google Scholar
  21. 21.
    Di CA, Liu Y, Yu G, Zhu D (2009) Interface engineering: an effective approach toward high-performance organic field-effect transistors. Acc Chem Res 42:1573–1583Google Scholar
  22. 22.
    Giri G, Verploegen E, Mannsfeld SCB, Atahan-Evrenk S, Kim DH, Lee SY, Becerril HA, Aspuru-Guzik A, Toney MF, Bao Z (2011) Tuning charge transport in solution-sheared organic semiconductors using lattice strain. Nature 480:504–508Google Scholar
  23. 23.
    Briseno AL, Mannsfeld SCB, Ling MM, Liu S, Tseng RJ, Reese C, Roberts ME, Yang Y, Wudl F, Bao Z (2006) Patterning organic single-crystal transistor arrays. Nature 444:913–917Google Scholar
  24. 24.
    Sundar VC, Zaumseil J, Podzorov V, Menard E, Willett RL, Someya T, Gershenson ME, Rogers JA (2004) Elastomeric transistor stamps: reversible probing of charge transport in organic crystals. Science 303:1644–1646Google Scholar
  25. 25.
    Jiang H, Yang X, Cui Z, Liu Y, Li H, Hu W, Liu Y, Zhu D (2007) Phase dependence of single crystalline transistors of tetrathiafulvalene. Appl Phys Lett 91:123505Google Scholar
  26. 26.
    Minemawari H, Yamada T, Matsui H, Tsutsumi JY, Haas S, Chiba R, Kumai R, Hasegawa T (2011) Inkjet printing of single-crystal films. Nature 475:364–367Google Scholar
  27. 27.
    Tang Q, Li H, Liu Y, Hu W (2006) High-performance air-stable n-type transistors with an asymmetrical device configuration based on organic single-crystalline submicrometer/nanometer ribbons. J Am Chem Soc 128:14634–14639Google Scholar
  28. 28.
    Zhou Y, Wang L, Wang J, Pei J, Cao Y (2008) Highly sensitive, air-stable photodetectors based on single organic sub-micrometer ribbons self-assembled through solution processing. Adv Mater 20:3745–3749Google Scholar
  29. 29.
    Hutchison GR, Ratner MA, Marks TJ (2005) Intermolecular charge transfer between heterocyclic oligomers. Effects of heteroatom and molecular packing on hopping transport in organic semiconductors. J Am Chem Soc 127:16866–16881Google Scholar
  30. 30.
    Bredas JL, Calbert JP, da Silva DA, Cornil J (2002) Organic semiconductors: a theoretical characterization of the basic parameters governing charge transport. Proc Natl Acad Sci USA 99:5804–5809Google Scholar
  31. 31.
    De Leeuw DM, Simenon MMJ, Brown AR, Einerhand REF (1997) Stability of n-type doped conducting polymers and consequences for polymeric microelectronic devices. Synth Met 87:53–59Google Scholar
  32. 32.
    Brown AR, De Leeuw DM, Lous EJ, Havinga EE (1994) Organic n-type field-effect transistor. Synth Met 66:257–261Google Scholar
  33. 33.
    Haddon RC, Perel AS, Morris RC, Palstra TTM, Hebard AF, Fleming RM (1995) C60 thin film transistors. Appl Phys Lett 67:121–123Google Scholar
  34. 34.
    Bromley ST, Mas-Torrent M, Hadley P, Rovira C (2004) Importance of intermolecular interactions in assessing hopping mobilities in organic field effect transistors: pentacene versus dithiophene–tetrathiafulvalene. J Am Chem Soc 126:6544–6545Google Scholar
  35. 35.
    Wurthner F, Schmidt R (2006) Electronic and crystal engineering of acenes for solution-processible self-assembling organic semiconductors. Chem Phys Chem 7:793–797Google Scholar
  36. 36.
    Dong H, Wang C, Hu W (2010) High performance organic semiconductors for field-effect transistors. Chem Commun 44:5211–5222Google Scholar
  37. 37.
    Moon H, Zeis R, Borkent EJ, Besnard C, Lovinger AJ, Siegrist T, Kloc C, Bao ZN (2004) Synthesis, crystal structure, and transistor performance of tetracene derivatives. J Am Chem Soc 126:15322–15323Google Scholar
  38. 38.
    Allard S, Forster M, Souharce B, Thiem H, Scherf U (2008) Organic semiconductors for solution-processable field-effect transistors (OFETs). Angew Chem Int Ed 47:4070–4098Google Scholar
  39. 39.
    Salleo A (2007) Charge transport in polymeric transistors. Mater Today 10:38–45Google Scholar
  40. 40.
    Henson ZB, Müllen K, Bazan GC (2012) Design strategies for organic semiconductors beyond the molecular formula. Nat Chem 4:699–704Google Scholar
  41. 41.
    Tsao HN, Cho DM, Park I, Hansen MR, Mavrinskiy A, Yoon DY, Graf R, Pisula W, Spiess HW, Müllen K (2011) Ultrahigh mobility in polymer field-effect transistors by design. J Am Chem Soc 133:2605–2612Google Scholar
  42. 42.
    Kline RJ, McGehee MD, Kadnikova EN, Liu J, Fréchet JMJ (2003) Controlling the field-effect mobility of regioregular polythiophene by changing the molecular weigh. Adv Mater 15:1519–1522Google Scholar
  43. 43.
    Okamoto K, Luscombe CK (2011) Controlled polymerizations for the synthesis of semiconducting conjugated polymers. Polym Chem 2:2424–2434Google Scholar
  44. 44.
    Carsten B, He F, Son HJ, Xu T, Yu L (2011) Stille polycondensation for synthesis of functional materials. Chem Rev 111:1493–1528Google Scholar
  45. 45.
    Osaka I, McCullough RD (2008) Advances in molecular design and synthesis of regioregular polythiophenes. Acc Chem Res 41:1202–1214Google Scholar
  46. 46.
    Berrouard P, Najari A, Pron A, Gendron D, Morin P, Pouliot J, Veilleux J, Leclerc M (2012) Synthesis of 5-Alkyl[3,4-c]thienopyrrole-4,6-dione-based polymers by direct heteroarylation. Angew Chem Int Ed 51:2068–2071Google Scholar
  47. 47.
    Sirringhaus H, Tessler N, Friend RH (1998) Integrated optoelectronic devices based on conjugated polymers. Science 280:1741–1744Google Scholar
  48. 48.
    Halik M, Klauk H, Zschieschang U, Schmid G, Ponomarenko S, Kirchmeyer S, Weber W (2003) Relationship between molecular structure and electrical performance of oligothiophene organic thin film transistors. Adv Mater 15:917–922Google Scholar
  49. 49.
    Gao J, Li R, Li L, Meng Q, Jiang H, Li H, Hu W (2007) High-performance field-effect transistor based on dibenzo[d,d’]thieno[3,2-b;4,5-b’]dithiophene, an easily synthesized semiconductor with high ionization potential. Adv Mater 19:3008–3011Google Scholar
  50. 50.
    Meng Q, Jiang L, Wei Z, Wang C, Zhao H, Li H, Xu W, Hu W (2010) Development of organic field-effect properties by introducing aryl-acetylene into benzodithiophene. J Mater Chem 20:10931–10935Google Scholar
  51. 51.
    Ortiz RP, Herrera H, Blanco RL, Huang H, Facchetti A, Marks TJ, Zheng Y, Segura JL (2010) Organic n-channel field-effect transistors based on arylenediimide-thiophene derivatives. J Am Chem Soc 132:8440–8452Google Scholar
  52. 52.
    Chu CW, Li SH, Chen CW, Shrotriya V, Yang Y (2005) High-performance organic thin-film transistors with metal oxide/metal bilayer electrode. Appl Phys Lett 87:193508Google Scholar
  53. 53.
    Di CA, Yu G, Liu YQ, Guo YL, Wang Y, Wu WP, Zhu DB (2008) High performance organic field-effect transistors with low-cost copper electrodes. Adv Mater 20:1286–1290Google Scholar
  54. 54.
    Gundlach DJ, Royer JE, Park SK, Subramanian S, Jurchescu OD, Hamadani BH, Moad AJ, Kline RJ, Teague LC, Kirillov O, Richter CA, Kushmerick JG, Richter LJ, Parkin SR, Jackson TN, Anthony JE (2008) Contact-induced crystallinity for high-performance soluble acene-based transistors and circuits. Nat Mater 7:216–221Google Scholar
  55. 55.
    Chen FC, Liao CH (2008) Improved air stability of n-channel organic thin-film transistors with surface modification on gate dielectrics. Appl Phys Lett 93:103310Google Scholar
  56. 56.
    Kumaki D, Yahiro M, Inoue Y, Tokito S (2007) Air stable, high performance pentacene thin-film transistor fabricated on SiO2 gate insulator treated with β–phenethyltrichlorosilane. Appl Phys Lett 90:133511Google Scholar
  57. 57.
    Aleshin AN, Lee JY, Chu SW, Kim JS, Park YW (2004) Mobility studies of field-effect transistor structures based on anthracene single crystals. Appl Phys Lett 84:5383–5385Google Scholar
  58. 58.
    Gundlach DJ, Nichols JA, Zhou L, Jackson TN (2002) Thin-film transistors based on well-ordered thermally evaporated naphthacene films. Appl Phys Lett 80:2925Google Scholar
  59. 59.
    Reese C, Chung WJ, Ling MM, Roberts M, Bao Z (2006) High-performance microscale single-crystal transistors by lithography on an elastomer dielectric. Appl Phys Lett 89:202108Google Scholar
  60. 60.
    Lin YY, Gundlach DJ, Nelson SF, Jackson TN (1997) Stacked pentacene layer organic thin-film transistors with improved characteristics. IEEE Electron Device Lett 18:606–608Google Scholar
  61. 61.
    Kelley TW, Muyres DV, Baude PF, Smith TP, Jones TD (2003) High performance organic thin film transistors. Mater Res Soc Symp Proc 771:169–179Google Scholar
  62. 62.
    Wang CH, Hsieh CY, Hwang JC (2011) Flexible organic thin-film transistors with silk fibroin as the gate dielectric. Adv Mater 23:1630–1634Google Scholar
  63. 63.
    Jurchescu OD, Popinciuc M, van Wees BJ, Palstra TTM (2007) Interface-controlled, high-mobility organic transistors. Adv Mater 19:688–692Google Scholar
  64. 64.
    Klauk H, Zschieschang U, Weitz RT, Meng H, Sun F, Nunes G, Keys DE, Fincher CR, Xiang Z (2007) Organic transistors based on di(phenylvinyl)anthracene: performance and stability. Adv Mater 19:3882–3887Google Scholar
  65. 65.
    Mondal R, Adhikari RM, Shah BK, Neckers DC (2007) Revisiting the stability of hexacenes. Org Lett 9:2505–2508Google Scholar
  66. 66.
    Mondal R, Shah BK, Neckers DC (2006) Photogeneration of heptacene in a polymer matrix. J Am Chem Soc 128:9612–9613Google Scholar
  67. 67.
    Meng H, Bendikov M, Mitchell G, Helgeson R, Wudl F, Bao Z, Siegrist T, Kloc C, Chen CH (2003) Tetramethylpentacene: remarkable absence of steric effect on field effect mobility. Adv Mater 15:1090–1093Google Scholar
  68. 68.
    Kelley TW, Boardman LD, Dunbar TD, Muyres DV, Pellerite MJ, Smith TYP (2003) High-performance OTFTs using surface-modified alumina dielectrics. J Phys Chem B 107:5877–5881Google Scholar
  69. 69.
    Kunugi Y, Ikari M, Okamoto K, Ogino K (2008) Organic field-effect transistors based on vapor deposited 2,9-dialkylpentacene films. J Photopolym Sci Technol 21:197–208Google Scholar
  70. 70.
    Okamoto T, Senatore ML, Ling MM, Mallik AB, Tang ML, Bao ZN (2007) Synthesis, characterization, and field-effect transistor performance of pentacene derivatives. Adv Mater 19:3381–3384Google Scholar
  71. 71.
    Perepichka DF, Bendikov M, Meng H, Wudl F (2003) A one-step synthesis of a poly(iptycene) through an unusual diels-alder cyclization/dechlorination of tetrachloropentacene. J Am Chem Soc 125:10190–10191Google Scholar
  72. 72.
    Li J, Wang M, Ren S, Gao X, Hong W, Li H, Zhu D (2012) High performance organic thin film transistor based on pentacene derivative: 6,13-dichloropentacene. J Mater Chem 22:10496–10500Google Scholar
  73. 73.
    Wang M, Li J, Zhao G, Wu Q, Huang Y, Hu W, Gao X, Li H, Zhu D (2013) High-performance organic field-effect transistors based on single and large-area aligned crystalline microribbons of 6,13-dichloropentacene. Adv Mater 25:2229–2233Google Scholar
  74. 74.
    Chi XL, Li DW, Zhang HQ, Chen YS, Garcia V, Garcia C, Siegrist T (2008) 5,6,11,12-tetrachlorotetracene, a tetracene derivative with π-stacking structure: the synthesis, crystal structure and transistor properties. Org Electron 9:234–240Google Scholar
  75. 75.
    Tripathi AK, Heinrich M, Siegrist T, Pflaum J (2007) Growth and electronic transport in 9,10-diphenylanthracene single crystals-an organic semiconductor of high electron and hole mobility. Adv Mater 19:2097–2101Google Scholar
  76. 76.
    Seo JH, Park DS, Cho SW, Kim CY, Jang WC, Whang CN, Yoo KH, Chang GS, Pedersen T, Moewes A, Chae KH, Cho SJ (2006) Buffer layer effect on the structural and electrical properties of rubrene-based organic thin-film transistors. Appl Phys Lett 89:163505Google Scholar
  77. 77.
    Stingelin-Stutzmann N, Smits E, Wondergem H, Tanase C, Blom P, Smith P, De Leeuw D (2005) Organic thin-film electronics from vitreous solution-processed rubrene hypereutectics. Nat Mater 4:601–606Google Scholar
  78. 78.
    Adams JM, Ramdas S (1979) The crystal structure of solution-grown 9,10-diphenylanthracene. a combined computational and X-ray study. Acta Crystallogr B 35:679–683Google Scholar
  79. 79.
    Miao Q, Chi X, Xiao S, Zeis R, Lefenfeld M, Siegrist T, Steigerwald ML, Nuckolls C (2006) Organization of acenes with a cruciform assembly motif. J Am Chem Soc 128:1340–1345Google Scholar
  80. 80.
    Anthony JE, Brooks JS, Eaton DL, Parkin SR (2001) Functionalized pentacene: improved electronic properties from control of solid-state order. J Am Chem Soc 123:9482–9483Google Scholar
  81. 81.
    Sheraw CD, Jackson TN, Eaton DL, Anthony JE (2003) Functionalized pentacene active layer organic thin-film transistors. Adv Mater 15:2009–2011Google Scholar
  82. 82.
    Park SK, Jackson TN, Anthony JE, Mourey DA (2007) High mobility solution processed 6,13-bis(triisopropyl-silylethynyl) pentacene organic thin film transistors. Appl Phys Lett 91:063514Google Scholar
  83. 83.
    Kim DH, Lee DY, Lee HS, Lee WH, Kim YH, Han JI, Cho K (2007) High-mobility organic transistors based on single-crystalline microribbons of triisopropylsilylethynyl pentacene via solution-phase self-assembly. Adv Mater 19:678–682Google Scholar
  84. 84.
    Llorente GR, Dufourg-Madec MB, Crouch DJ, Pritchard RG, Ogier S, Yeates SG (2009) High performance, acene-based organic thin film transistors. Chem Commun 43:3059–3061Google Scholar
  85. 85.
    Schmidt R, Gottling S, Leusser D, Stalke D, Krause AM, Wurthner F (2006) Highly soluble acenes as semiconductors for thin film transistors. J Mater Chem 16:3708–3714Google Scholar
  86. 86.
    Li Y, Wu Y, Liu P, Prostran Z, Gardner S, Ong BS (2007) Stable solution-processed high-mobility substituted pentacene semiconductors. Chem Mater 19:418–423Google Scholar
  87. 87.
    Zhang X, Jiang X, Luo J, Chi C, Chen H, Wu J (2010) A cruciform 6,6′-dipentacenyl: synthesis, solid-state packing and applications in thin-film transistors. Chem Eur J 16:464–468Google Scholar
  88. 88.
    Ohki K, Inokuchi H, Maruyama Y (1963) Charge mobility in pyrene crystals. Bull Chem Soc Jpn 36:1512–1515Google Scholar
  89. 89.
    Suzuki A, Inokuchi H, Maruyama Y (1976) Charge-carrier drift mobility in pyrene single crystals. Bull Chem Soc Jpn 49:3347–3351Google Scholar
  90. 90.
    Zhang H, Wang Y, Shao K, Liu Y, Chen S, Qiu W, Sun X, Qi T, Ma Y, Yu G, Su Z, Zhu D (2006) Novel butterfly pyrene-based organic semiconductors for field effect transistors. Chem Commun 40:755–757Google Scholar
  91. 91.
    Ashizawa M, Yamada K, Fukaya A, Kato R, Hara K, Takeya J (2008) Effect of molecular packing on field-effect performance of single crystals of thienyl-substituted pyrenes. Chem Mater 20:4883–4890Google Scholar
  92. 92.
    Anant P, Lucas NT, Ball JM, Anthopoulos TD, Jacob J (2010) Synthesis and characterization of pyrene-centered oligothiophenes. Synth Met 160:1987–1993Google Scholar
  93. 93.
    Kwon J, Hong JP, Lee S, Hong JI (2013) 4,4′-Di(pyren-1-yl)-1,10-biphenyl as an efficient material for organic light-emitting diodes and thin-film transistors. New J Chem 37:2881–2887Google Scholar
  94. 94.
    Kwon J, Hong JP, Noh S, Kim TM, Kim JJ, Lee C, Lee S, Hong JI (2012) Pyrene end-capped oligothiophene derivatives for organic thin-film transistors and organic solar cells. New J Chem 36:1813–1818Google Scholar
  95. 95.
    Cho H, Lee S, Cho NS, Jabbour GE, Kwak J, Hwang DH, Lee C (2013) High-mobility pyrene-based semiconductor for organic thin-film transistors. ACS Appl Mater Interfaces 5:3855–3860Google Scholar
  96. 96.
    Wang Y, Wang H, Liu Y, Di CA, Sun Y, Wu W, Yu G, Zhang D, Zhu D (2006) 1-Imino nitroxide pyrene for high performance organic field-effect transistors with low operating voltage. J Am Chem Soc 128:13058–13059Google Scholar
  97. 97.
    Choi TY, Kang HS, Park DH, Koo JM, Lee JK, Ahn SD, Joo J (2003) Trap distribution and field effect transistor (FET) of perylene by organic molecular beam deposition (OMBD). Synth Met 137:929–930Google Scholar
  98. 98.
    Ohta T, Nagano T, Ochi K, Kubozono Y, Fujiwara A (2006) Field-effect transistors with thin films of perylene on SiO2 and polyimide gate insulators. Appl Phys Lett 88:103506Google Scholar
  99. 99.
    Kotani M, Kakinuma K, Yoshimura M, Ishii K, Yamazaki S, Kobori T, Okuyama H, Kobayashi H, Tada H (2006) Charge carrier transport in high purity perylene single crystal studied by time-of-flight measurements and through field effect transistor characteristics. Chem Phys 325:160–169Google Scholar
  100. 100.
    Sun YM, Tan L, Jiang SD, Qian HL, Wang ZH, Yan DW, Di CA, Wang Y, Wu WP, Yu G, Yan SK, Wang CR, Hu WP, Liu YQ, Zhu DB (2007) High-performance transistor based on individual single-crystalline micrometer wire of perylo[1,12-b,c,d]thiophene. J Am Chem Soc 129:1882–1883Google Scholar
  101. 101.
    Tan L, Jiang W, Jiang L, Jiang S, Wang Z, Yan S, Hu W (2009) Single crystalline microribbons of perylo[1,12-b,c,d]selenophene for high performance transistors. Appl Phys Lett 94:153306Google Scholar
  102. 102.
    Jiang W, Zhou Y, Geng H, Jiang S, Yan S, Hu W, Wang Z, Shuai Z, Pei J (2011) Solution-processed, high-performance nanoribbon transistors based on dithioperylene. J Am Chem Soc 133:1–3Google Scholar
  103. 103.
    Tian HK, Shi JW, Dong SQ, Yan DH, Wang LX, Geng YH, Wang FS (2006) Novel highly stable semiconductors based on phenanthrene for organic field-effect transistors. Chem Commun 40:3498–3500Google Scholar
  104. 104.
    Cho NS, Cho S, Elbing M, Lee JK, Yang R, Seo JH, Lee K, Bazan GC, Heeger AJ (2008) Organic thin-film transistors based on r,ω-Dihexyldithienyl-dihydrophenanthrene. Chem Mater 20:6289–6291Google Scholar
  105. 105.
    Kawasaki N, Kubozono Y, Okamoto H, Fujiwara A, Yamaji M (2009) Trap states and transport characteristics in picene thin film field-effect transistor. Appl Phys Lett 94:043310Google Scholar
  106. 106.
    Hoang MH, Cho MJ, Kim KH, Cho MY, Joo JS, Choi DH (2009) New semiconducting multi-branched conjugated molecules based on π-Extended triphenylene and its application to organic field-effect transistor. Thin Solid Films 518:501–506Google Scholar
  107. 107.
    Shklyarevskiy IO, Jonkheijm P, Stutzmann N, Wasserberg D, Wondergem HJ, Christianen PCM, Schenning A, de Leeuw DM, Tomovic Z, Wu JS, Müllen K, Maan JC (2005) High anisotropy of the field-effect transistor mobility in magnetically aligned discotic liquid-crystalline semiconductors. J Am Chem Soc 127:16233–16237Google Scholar
  108. 108.
    Xiao SX, Myers M, Miao Q, Sanaur S, Pang KL, Steigerwald ML, Nuckolls C (2005) Molecular wires from contorted aromatic compounds. Angew Chem Int Ed 44:7390–7394Google Scholar
  109. 109.
    Ebata H, Izawa T, Miyazaki E, Takimiya K, Ikeda M, Kuwabara H, Yui T (2007) Highly soluble [1]benzothieno[3,2-b]benzothiophene (BTBT) derivatives for high-performance, solution-processed organic field-effect transistors. J Am Chem Soc 129:15732–15733Google Scholar
  110. 110.
    Minemawari H, Yamada T, Matsui H, Tsutsumi J, Haas S, Chiba R, Kumai R, Hasegawa T (2011) Inkjet printing of single-crystal films. Nature 275:364–367Google Scholar
  111. 111.
    Yuan Y, Giri G, Ayzner AL, Zoombelt AP, Mannsfeld SCB, Chen J, Nordlund D, Toney MF, Huang J, Bao Z (2014) Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method. Nat Comm 5:3005Google Scholar
  112. 112.
    Izawa T, Miyazaki E, Takimiya K (2008) Molecular ordering of high-performance soluble molecular semiconductors and re-evaluation of their field-effect transistor characteristics. Adv Mater 20:3388–3392Google Scholar
  113. 113.
    Amin AY, Khassanov A, Reuter K, Meyer-Friedrichsen T, Halik M (2012) Low-voltage organic field effect transistors with a 2–tridecyl[1]benzothieno[3,2-b][1]benzothiophene semiconductor layer. J Am Chem Soc 134:16548–16550Google Scholar
  114. 114.
    Tang ML, Okamoto T, Bao ZN (2006) High-performance organic semiconductors: asymmetric linear acenes containing sulphur. J Am Chem Soc 128:16002–16003Google Scholar
  115. 115.
    Shinamura S, Osaka I, Miyazaki E, Nakao A, Yamagishi M, Takeya J, Takimiya K (2011) Linear- and angular-shaped naphthodithiophenes: selective synthesis, properties, and application to organic field-effect transistors. J Am Chem Soc 133:5024–5035Google Scholar
  116. 116.
    Shinamura S, Miyazaki E, Takimiya K (2010) Synthesis, properties, crystal structures, and semiconductor characteristics of naphtho[1,2-b:5,6-b′]dithiophene and –diselenophene derivatives. J Org Chem 75:1228–1234Google Scholar
  117. 117.
    Liu Y, Wang Y, Wu WP, Liu YQ, Xi HX, Wang LM, Qiu WF, Lu K, Du CY, Yu G (2009) Synthesis, characterization, and field-effect transistor performance of thieno[3,2-b]thieno[2′,3′:4,5]thieno[2,3-d]thiophene derivatives. Adv Funct Mater 19:772–778Google Scholar
  118. 118.
    Du CY, Guo YL, Liu YQ, Qiu WF, Zhang HJ, Gao XK, Liu Y, Qi T, Lu K, Yu G (2008) Anthra[2,3-b]benzo[d]thiophene: an air-stable asymmetric organic semiconductor with high mobility at room temperature. Chem Mater 20:4188–4190Google Scholar
  119. 119.
    Guo YL, Du CY, Yu G, Di CA, Jiang SD, Xi HX, Zheng J, Yan SK, Yu CL, Hu WP, Liu YQ (2010) High-performance phototransistors based on organic microribbons prepared by a solution self-assembly process. Adv Funct Mater 20:1019–1024Google Scholar
  120. 120.
    Okamoto T, Mitsui C, Yamagishi M, Nakahara K, Soeda J, Hirose Y, Miwa K, Sato H, Yamano A, Matsushita T, Uemura T, Takeya J (2013) V-shaped organic semiconductors with solution processability, high mobility, and high thermal durability. Adv Mater 25:6392–6397Google Scholar
  121. 121.
    Ebata H, Miyazaki E, Yamamoto T, Takimiya K (2007) Synthesis, properties, and structures of benzo[1,2-b:4,5-b′]bis[b]benzothiophene and Benzo[1,2-b:4,5-b′]bis[b]benzoselenophene. Org Lett 9:4499–4502Google Scholar
  122. 122.
    Gao P, Beckmann D, Tsao HN, Feng XL, Enkelmann V, Pisula W, Müllen K (2008) Benzo[1,2-b:4,5-b′]bis[b]benzothiophene as solution processible organic semiconductor for field-effect transistors. Chem Commun 42:1548–1550Google Scholar
  123. 123.
    Li R, Jiang L, Meng Q, Gao J, Li H, Tang Q, He M, Hu W, Liu Y, Zhu D (2009) Micrometer-sized organic single crystals, anisotropic transport, and field-effect transistors of a fused-ring thienoacene. Adv Mater 21:4492–4495Google Scholar
  124. 124.
    Li R, Dong H, Zhan X, He Y, Li H, Hu W (2010) Single crystal ribbons and transistors of a solution processed sickle-like fused-ring thienoacene. J Mater Chem 20:6014–6018Google Scholar
  125. 125.
    Laquindanum JG, Katz HE, Lovinger AJ (1998) Synthesis, morphology, and field-effect mobility of anthradithiophenes. J Am Chem Soc 120:664–672Google Scholar
  126. 126.
    Gao P, Beckmann D, Tsao HN, Feng X, Enkelmann V, Baumgarten M, Pisula W, Müllen K (2009) Dithieno[2,3-d;2′,3′-d′]benzo[1,2-b;4,5-b′]dithiophene (DTBDT) as semiconductor for high-performance, solution-processed organic field-effect transistors. Adv Mater 21:213–216Google Scholar
  127. 127.
    Xiao K, Liu YQ, Qi T, Zhang W, Wang F, Gao JH, Qiu WF, Ma YQ, Cui GL, Chen SY, Zhan XW, Yu G, Qin JG, Hu WP, Zhu DB (2005) A highly π-stacked organic semiconductor for field-effect transistors based on linearly condensed pentathienoacene. J Am Chem Soc 127:13281–13286Google Scholar
  128. 128.
    Huang JY, Luo H, Wang LP, Guo YL, Zhang WF, Chen HJ, Zhu ML, Liu YQ, Yu G (2012) Dibenzoannelated tetrathienoacene: synthesis, characterization, and applications in organic field-effect transistors. Org Let 14:3300–3303Google Scholar
  129. 129.
    Yamamoto T, Takimiya K (2007) Facile synthesis of highly π-extended heteroarenes, dinaphtho[2,3-b:2′,3′-f]chalcogenopheno[3,2-b]chalco-genophenes, and their application to field-effect transistors. J Am Chem Soc 129:2224–2225Google Scholar
  130. 130.
    Haas S, Takahashi Y, Takimiya K, Hasegawa T (2009) High-performance dinaphtho-thieno-thiophene single crystal field-effect transistors. Appl Phys Lett 95:022111Google Scholar
  131. 131.
    Kang MJ, Doi I, Mori H, Miyazaki E, Takimiya K, Ikeda M, Kuwabara H (2011) Alkylated dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophenes (Cn-DNTTs): organic semiconductors for high performance thin-film transistors. Adv Mater 23:1222–1225Google Scholar
  132. 132.
    Kang MJ, Miyazaki E, Osaka I, Takimiya K, Nakao A (2013) Diphenyl derivatives of dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene: organic semiconductors for thermally stable thin-film transistors. ACS Appl Mater Interfaces 5:2331–2336Google Scholar
  133. 133.
    Sirringhaus H, Friend RH, Wang C, Leuninger J, Müllen K (1999) Dibenzothienobisbenzothiophene-a novel fused-ring oligomer with high field-effect mobility. J Mater Chem 9:2095–2101Google Scholar
  134. 134.
    Yang YS, Yasuda T, Adachi C (2012) Organic single-crystal transistors based on π-extended heteroheptacene microribbons. Bull Chem Soc Jpn 85:1186–1191Google Scholar
  135. 135.
    Kunugi Y, Takimiya K, Yamashita K, Aso Y, Otsubo T (2002) Organic field-effect transistors using di(2-thienyl)naphthodithiophenes as active layers. Chem Lett 10:958–959Google Scholar
  136. 136.
    Takimiya K, Kunugi Y, Toyoshima Y, Otsubo T (2005) 2,6-diarylnaphtho[1,8-bc:5,4-bc′]dithiophenes as new high-performance semiconductors for organic field-effect transistors. J Am Chem Soc 127:3605–3612Google Scholar
  137. 137.
    Shukla D, Welter TR, Robello DR, Giesen DJ, Lenhard JR, Ahearn WG, Meyer DM, Rajeswaran M (2009) Dioxapyrene-based organic semiconductors for organic field effect transistors. J Phys Chem C 113:14482–14486Google Scholar
  138. 138.
    Kobayashi N, Sasaki M, Nomoto K (2009) Stable peri-xanthenoxanthene thin-film transistors with efficient carrier injection. Chem Mater 21:552–556Google Scholar
  139. 139.
    Briseno AL, Miao Q, Ling MM, Reese C, Meng H, Bao ZN, Wudl F (2006) Hexathiapentacene: structure, molecular packing, and thin-film transistors. J Am Chem Soc 128:15576–15577Google Scholar
  140. 140.
    Liu WJ, Zhou Y, Ma Y, Cao Y, Wang J, Pei J (2007) Thin film organic transistors from air-stable heteroarenes: anthra-[1,2-b:4,3-b′:5,6-b″′:8,7-b″′]tetrathiophene derivatives. Org Lett 9:4187–4190Google Scholar
  141. 141.
    Brusso JL, Hirst OD, Dadvand A, Ganesan S, Cicoira F, Robertson CM, Oakley RT, Rosei F, Perepichka DF (2008) Two-dimensional structural motif in thienoacene semiconductors: synthesis, structure, and properties of tetrathienoanthracene isomers. Chem Mater 20:2484–2494Google Scholar
  142. 142.
    Wang JY, Zhou Y, Yan J, Ding L, Ma Y, Cao Y, Wang J, Pei J (2009) New fused heteroarenes for high-performance field-effect transistors. Chem Mater 21:2595–2597Google Scholar
  143. 143.
    Zhou Y, Lei T, Wang L, Pei J, Cao Y, Wang J (2010) High-performance organic field-effect transistors from organic single-crystal microribbons formed by a solution process. Adv Mater 22:1484–1487Google Scholar
  144. 144.
    Zhang S, Guo Y, Zhang Y, Liu R, Li Q, Zhan X, Liu Y, Hu W (2010) Synthesis, self-assembly, and solution-processed nanoribbon field-effect transistor of a fused-nine-ring thienoacene. Chem Commun 46:2841–2843Google Scholar
  145. 145.
    Zhang W, Sun X, Xia P, Yu G, Wong M, Liu Y, Zhu D (2011) novel butterfly-shaped fused heteroacenes: synthesis, properties, and device performance of solution-processed field-effect transistors. Org Let 14:4382–4385Google Scholar
  146. 146.
    Chernichenko KY, Sumerin VV, Shpanchenko RV, Balenkova ES, Nenajdenko VG (2006) “Sunflower”: a new form of carbon sulfide. Angew Chem Int Ed 45:7367–7370Google Scholar
  147. 147.
    Dadvand A, Cicoira F, Chernichenko KY, Balenkova ES, Osuna RM, Rosei F, Nenajdenko VG, Perepichka DF (2008) Heterocirculenes as a new class of organic semiconductors. Chem Commun 42:5354–5356Google Scholar
  148. 148.
    Sun YM, Ma YW, Liu YQ, Lin YY, Wang ZY, Wang Y, Di CG, Xiao K, Chen XM, Qiu WF, Zhang B, Yu G, Hu WP, Zhu DB (2006) High performance and stable organic thin-film transistors based on fused thiophenes. Adv Funct Mater 16:426–432Google Scholar
  149. 149.
    Zhu M, Luo H, Wang L, Guo Y, Zhang W, Liu Y, Yu G (2013) The synthesis of 2,6-dialkylphenyldithieno[3,2-b:2′,3′-d]thiophene derivatives and their applications in organic field-effect transistors. Dyes Pigm 98:17–24Google Scholar
  150. 150.
    Li XC, Sirringhaus H, Garnier F, Holmes AB, Moratti SC, Feeder N, Clegg W, Teat SJ, Friend RH (1998) a highly π-stacked organic semiconductor for thin film transistors based on fused thiophenes. J Am Chem Soc 120:2206–2207Google Scholar
  151. 151.
    Hunziker C, Zhan X, Losio PA, Figi H, Kwon OP, Barlow S, Guenter P, Marder SR (2007) Highly ordered thin films of a bis(dithienothiophene) derivative. J Mater Chem 17:4972–4979Google Scholar
  152. 152.
    Zhang L, Tan L, Hu WP, Wang ZH (2009) Synthesis, packing arrangement and transistor performance of dimers of dithienothiophenes. J Mater Chem 19:8216–8222Google Scholar
  153. 153.
    Chen H, Yu QC, Yu G, Guo Y, Huang J, Zhu M, Guo X, Liu Y (2011) Synthesis and characterization of novel semiconductors based on thieno[3,2-b][1]benzothiophene cores and their applications in the organic thin-film transistors. J Phys Chem C 115:23984–23991Google Scholar
  154. 154.
    Zhang L, Tan L, Wang Z, Hu W, Zhu D (2009) High-performance, stable organic field-effect transistors based on trans-1,2-(Dithieno[2,3-b:3ʹ,2ʹ-d]thiophene)ethene. Chem Mater 21:1993–1999Google Scholar
  155. 155.
    Mamada M, Nishida JI, Kumaki D, Tokito S, Yamashita Y (2008) High performance organic field-effect transistors based on [2,2′]bi[naphtho[2,3-b]thiophenyl] with a simple structure. J Mater Chem 18:3442–3447Google Scholar
  156. 156.
    Zhang Y, Ichikawa M, Hattori J, Kato T, Sazaki A, Kanazawa S, Kato S, Zhang C, Taniguchi Y (2009) Fused thiophene-split oligothiophenes with high ionization potentials for OTFTs. Synth Met 159:1890–1895Google Scholar
  157. 157.
    Didane Y, Mehl GH, Kumagai A, Yoshimoto N, Videlot-Ackermann C, Brisset H (2008) A “kite” shaped styryl end-capped benzo[2,1-b:3,4-b′]dithiophene with high electrical performances in organic thin film transistors. J Am Chem Soc 130:17681–17683Google Scholar
  158. 158.
    Wang C, Wei Z, Meng Q, Zhao H, Xu W, Li H, Hu W (2010) Dibenzo[b,d]thiophene based oligomers with carbon–carbon unsaturated bonds for high performance field-effect transistors. Org Electron 11:544–551Google Scholar
  159. 159.
    Garnier F, Horowitz G, Peng XZ, Fichou D (1991) Structural basis for high carrier mobility in conjugated oligomers. Synth Met 45:163–171Google Scholar
  160. 160.
    Horowitz G, Hajlaoui ME (2000) Mobility in polycrystalline oligothiophene field-effect transistors dependent on grain size. Adv Mater 12:1046–1050Google Scholar
  161. 161.
    Deman AL, Tardy J, Nicolas Y, Blanchard P, Roncali J (2004) Structural effects on the characteristics of organic field effect transistors based on new oligothiophene derivatives. Synth Met 146:365–371Google Scholar
  162. 162.
    Garnier F, Hajlaoui R, El Kassmi A, Horowitz G, Laigre L, Porzio W, Armanini M, Provasoli F (1998) Dihexylquaterthiophene, a two-dimensional liquid crystal-like organic semiconductor with high transport properties. Chem Mater 10:3334–3339Google Scholar
  163. 163.
    Locklin J, Li DW, Mannsfeld SCB, Borkent EJ, Meng H, Advincula R, Bao ZN (2005) Organic thin film transistors based on cyclohexyl-substituted organic semiconductors. Chem Mater 17:3366–3374Google Scholar
  164. 164.
    Yoon MH, Facchetti A, Stern CE, Marks TJ (2006) Fluorocarbon-modified organic semiconductors: molecular architecture, electronic, and crystal structure tuning of arene- versus fluoroarene-thiophene oligomer thin-film properties. J Am Chem Soc 128:5792–5801Google Scholar
  165. 165.
    Yamao T, Juri K, Kamoi A, Hotta S (2009) Field-effect transistors based on organic single crystals grown by an improved vapor phase method. Org Electron 10:1241–1247Google Scholar
  166. 166.
    Zhao TY, Wei ZM, Song YB, Xu W, Hu WP, Zhu DB (2007) Tetrathia[22]annulene[1,1,2,2]: physical properties, crystal structure and application in organic field-effect transistors. J Mater Chem 17:4377–4381Google Scholar
  167. 167.
    Payne MM, Parkin SR, Anthony JE, Kuo CC, Jackson TN (2005) Organic field-effect transistors from solution-deposited functionalized acenes with mobilities as high as 1 cm2 V−1 s−1. J Am Chem Soc 127:4986–4987Google Scholar
  168. 168.
    Anthony JE, Subramanian S, Parkin SR, Park SK, Jackson TN (2009) Thin-film morphology and transistor performance of alkyl-substituted triethylsilylethynyl anthradithiophenes. J Mater Chem 19:7984–7989Google Scholar
  169. 169.
    Subramanian S, Park SK, Parkin SR, Podzorov V, Jackson TN, Anthony JE (2008) Chromophore fluorination enhances crystallization and stability of soluble anthradithiophene semiconductors. J Am Chem Soc 130:2706–2707Google Scholar
  170. 170.
    Jurchescu OD, Subramanian S, Kline RJ, Hudson SD, Anthony JE, Jackson TN, Gundlach DJ (2008) Organic single crystal field-effect transistors of a soluble anthradithiophene. Chem Mater 20:6733–6737Google Scholar
  171. 171.
    Lehnherr D, Waterloo AR, Goetz KP, Payne MM, Hampel F, Anthony JE, Jurchescu OD, Tykwinski RR (2012) Isomerically pure syn-anthradithiophenes: synthesis, properties, and fet performance. Org Lett 14:3660–3663Google Scholar
  172. 172.
    Tang ML, Reichardt AD, Siegrist T, Mannsfeld SCB, Bao ZN (2008) Trialkylsilylethynyl-functionalized tetraceno[2,3-b]thiophene and anthra[2,3-b]thiophene organic transistors. Chem Mater 20:4669–4676Google Scholar
  173. 173.
    Goetz KP, Li Z, Ward JW, Bougher C, Rivnay J, Smith J, Conrad BR, Parkin SR, Anthopoulos TD, Salleo A, Anthony JE, Jurchescu OD (2011) Effect of acene length on electronic properties in 5-, 6-, and 7-ringed heteroacenes. Adv Mater 23:3698–3703Google Scholar
  174. 174.
    Zhang W, Zhang J, Chen X, Mao Z, Xie X, Wang L, Liao Y, Yu G, Liu Y, Zhu D (2013) Bitrialkylsilylethynyl thienoacenes: synthesis, molecular conformation and crystal packing, and their field-effect properties. J Mater Chem C 1:6403–6410Google Scholar
  175. 175.
    Bendikov M, Wudl F, Perepichka DF (2004) Tetrathiafulvalenes, oligoacenenes, and their buckminsterfullerene derivatives: the brick and mortar of organic electronics. Chem Rev 104:4891–4946Google Scholar
  176. 176.
    Jérome D (2004) Organic conductors: from charge density wave TTF–TCNQ to superconducting (TMTSF)2PF6. Chem Rev 104:5565–5591Google Scholar
  177. 177.
    Kobayashi H, Kobayashi A, Sasaki Y, Saito G, Inokuchi H (1986) The crystal and molecular structures of bis(ethylenedithio)-tetrathiafulvalene. Bull Chem Soc Jpn 59:301–302Google Scholar
  178. 178.
    Bourgoin JP, Vandevyver M, Barraud A, Tremblay G, Hesto P (1993) Field-effect transistor based on conducting langmuir-blodgett films of EDTTTF derivatives. Mol Eng 2:309–314Google Scholar
  179. 179.
    Takahashi Y, Hasegawa T, Horiuchi S, Kumai R, Tokura Y, Saito G (2007) High mobility organic field-effect transistor based on hexamethylenetetrathiafulvalene with organic metal electrodes. Chem Mater 19:6382–6384Google Scholar
  180. 180.
    Mas-Torrent M, Durkut M, Hadley P, Ribas X, Rovira C (2004) High mobility of dithiophene-tetrathiafulvalene single-crystal organic field effect transistors. J Am Chem Soc 126:984–985Google Scholar
  181. 181.
    Mas-Torrent M, Hadley P, Bromley ST, Ribas X, Tarres J, Mas M, Molins E, Veciana J, Rovira C (2004) Correlation between crystal structure and mobility in organic field-effect transistors based on single crystals of tetrathiafulvalene derivatives. J Am Chem Soc 126:8546–8553Google Scholar
  182. 182.
    Miskiewicz P, Mas-Torrent M, Jung J, Kotarba S, Glowacki I, Gomar-Nadal E, Amabilino DB, Veciana J, Krause B, Carbone D, Rovira C, Ulanski J (2006) Efficient high area OFETs by solution based processing of a π-electron rich donor. Chem Mater 18:4724–4729Google Scholar
  183. 183.
    Leufgen M, Rost O, Gould C, Schmidt G, Geurts J, Molenkamp LW, Oxtoby NS, Mas-Torrent M, Crivillers N, Veciana J, Rovira C (2008) High-mobility tetrathiafulvalene organic field-effect transistors from solution processing. Org Electron 9:1101–1106Google Scholar
  184. 184.
    Mas-Torrent M, Hadley P, Bromley ST, Crivillers N, Veciana J, Rovira C (2005) Single-crystal organic field-effect transistors based on dibenzo-tetrathiafulvalene. Appl Phys Lett 86:012110Google Scholar
  185. 185.
    Nishida JI, Ando S, Yamaguchi J, Itaka K, Koinuma H, Tada H, Tokito S, Yamashita Y (2005) High-performance organic field-effect transistors based on π-extended tetrathiafulvalene derivatives. J Am Chem Soc 127:10142–10143Google Scholar
  186. 186.
    Nishida JI, Kumaki D, Tokito S, Yamashita Y (2006) High performance n- and p-type field-effect transistors based on tetrathiafulvalene derivatives. J Am Chem Soc 128:9598–9599Google Scholar
  187. 187.
    Doi I, Miyazaki E, Takimiya K, Kunugi Y (2007) Development of N-Alkyl-substituted bis(pyrrolo[3,4-d])tetrathiafulvalenes as organic semiconductors for solution-processible field-effect transistors, development of n-alkyl-substituted bis(pyrrolo[3,4-d])tetrathiafulvalenes as organic semiconductors for solution-processible field-effect transistors. Chem Mater 19:5230–5233Google Scholar
  188. 188.
    Gao X, Wang Y, Yang X, Liu Y, Qiu W, Wu W, Zhang H, Qi T, Liu Y, Lu K, Du C, Shuai Z, Yu G, Zhu D (2007) Dibenzotetrathiafulvalene bisimides: new building blocks for organic electronic materials. Adv Mater 19:3037–3042Google Scholar
  189. 189.
    Xue JG, Forrest SR (2001) Organic thin-film transistors based on bis(1,2,5-thiadiazolo)-p-quinobis(1,3-dithiole). Appl Phys Lett 79:3714Google Scholar
  190. 190.
    Takada M, Graaf H, Yamashita Y, Tada H (2002) BTQBT (bis-(1,2,5-thiadiazolo)-p-quinobis(1,3-dithiole)) thin films; a promising candidate for high mobility organic transistors. Jpn J Appl Phys Part 2(41):L4Google Scholar
  191. 191.
    Imaeda K, Yamashita Y, Li YF, Mori T, Inokuchi H, Sano M (1992) Hall-effect observation in the new organic semiconductor bis(1,2,5-thiadiazolo)-p-quinobis(1,3-dithiole)(BTQBT). J Mater Chem 2:115–118Google Scholar
  192. 192.
    Bando Y, Shirahata T, Shibata K, Wada H, Mori T, Imakubo T (2008) Organic field-effect transistors based on alkyl-terminated tetrathiapentalene (TTP) derivatives. Chem Mater 20:5119–5121Google Scholar
  193. 193.
    Zhang W, Yu G, Liu YQ (2014) Heteroatom substituted organic/polymeric semiconductors and their applications in field-effect transistors. Adv Mater Adma 201305297R1Google Scholar
  194. 194.
    Miao Q, Nguyen TQ, Someya T, Blanchet GB, Nuckolls C (2003) Synthesis, assembly, and thin film transistors of dihydrodiazapentacene: an isostructural motif for pentacene. J Am Chem Soc 125:10284–10287Google Scholar
  195. 195.
    Tang Q, Zhang D, Wang S, Ke N, Xu J, Yu JC, Miao Q (2009) A meaningful analogue of pentacene: charge transport, polymorphs, and electronic structures of dihydrodiazapentacene. Chem Mater 21:1400–1405Google Scholar
  196. 196.
    Weng SZ, Shukla P, Kuo MY, Chang YC, Sheu HS, Chao I, Tao YT (2009) Diazapentacene derivatives as thin-film transistor materials: morphology control in realizing high-field-effect mobility. ACS Appl Mater Interfaces 1:2071–2079Google Scholar
  197. 197.
    Ahmed E, Briseno AL, Xia Y, Jenekhe SA (2008) High mobility single-crystal field-effect transistors from bisindoloquinoline semiconductors. J Am Chem Soc 130:1118–1119Google Scholar
  198. 198.
    Ma YQ, Sun YM, Liu YQ, Gao JH, Chen SY, Sun XB, Qiu WF, Yu G, Cui GL, Hu WP, Zhu DB (2005) Organic thin film transistors based on stable amorphous ladder tetraazapentacenes semiconductors. J Mater Chem 15:4894–4898Google Scholar
  199. 199.
    Hong W, Wei Z, Xi HX, Xu W, Hu WP, Wang QR, Zhu DB (2008) 6H-Pyrrolo[3,2-b:4,5-b′]bis[1, 4]benzothiazines: facilely synthesized semiconductors for organic field-effect transistors. J Mater Chem 18:4814–4820Google Scholar
  200. 200.
    Wei Z, Hong W, Geng H, Wang C, Liu Y, Li R, Xu W, Shuai Z, Hu WP, Wang Q, Zhu DB (2010) Organic single crystal field-effect transistors based on 6H-pyrrolo[3,2–b:4,5–b′]bis[1, 4]benzothiazine and its derivatives. Adv Mater 22:2458–2462Google Scholar
  201. 201.
    Wu YL, Li YN, Gardner S, Ong BS (2005) Indolo[3,2-b]carbazole-based thin-film transistors with high mobility and stability. J Am Chem Soc 127:614–618Google Scholar
  202. 202.
    Li YN, Wu YL, Gardner S, Ong BS (2005) Novel peripherally substituted indolo[3,2-b]carbazoles for high-mobility organic thin-film transistors. Adv Mater 17:849–853Google Scholar
  203. 203.
    Guo YL, Zhao HP, Yu G, Di CA, Liu W, Jiang SD, Yan SK, Wang CR, Zhang HL, Sun XN, Tao XT, Liu YQ (2008) Single-crystal microribbons of an indolo[3,2-b]carbazole derivative by solution-phase self-assembly with novel mechanical, electrical, and optical properties. Adv Mater 20:4835–4839Google Scholar
  204. 204.
    Song YB, Di CA, Wei ZM, Zhao TY, Xu W, Liu YQ, Zhang DQ, Zhu DB (2008) Synthesis, characterization, and field-effect transistor properties of carbazolenevinylene oligomers: from linear to cyclic architectures. Chem-Eur J 14:4731–4740Google Scholar
  205. 205.
    Shirota Y, Kageyama H (2007) Charge carrier transporting molecular materials and their applications in devices. Chem Rev 107:953–1010Google Scholar
  206. 206.
    Song YB, Di CA, Yang X, Li S, Xu W, Liu YQ, Yang L, Shuai ZG, Zhang DQ, Zhu DB (2006) A cyclic triphenylamine dimer for organic field-effect transistors with high performance. J Am Chem Soc 128:15940–15941Google Scholar
  207. 207.
    Bao ZN, Lovinger AJ, Dodabalapur A (1997) Highly ordered vacuum-deposited thin films of metallophthalocyanines and their applications in field-effect transistors. Adv Mater 9:42–44Google Scholar
  208. 208.
    Bao ZN, Lovinger AJ, Dodabalapur A (1996) Organic field-effect transistors with high mobility based on copper phthalocyanine. Appl Phys Lett 69:3066Google Scholar
  209. 209.
    Tang QX, Li HX, Song Y, Xu W, Hu W, Jiang L, Liu Y, Wang X, Zhu D (2006) In situ patterning of organic single-crystalline nanoribbons on a SiO2 surface for the fabrication of various architectures and high-quality transistors. Adv Mater 18:3010–3014Google Scholar
  210. 210.
    Li LQ, Tang QX, Li HX, Yang XD, Hu WP, Song YB, Shuai ZG, Xu W, Liu YQ, Zhu DB (2007) An ultra closely π-stacked organic semiconductor for high performance field-effect transistors. Adv Mater 19:2613–2617Google Scholar
  211. 211.
    Wang H, Song D, Yang J, Yu B, Geng Y, Yan D (2007) High mobility vanadyl-phthalocyanine polycrystalline films for organic field-effect transistors. Appl Phys Lett 90:253510Google Scholar
  212. 212.
    Checcoli P, Conte G, Salvatori S, Paolesse R, Bolognesi A, Berliocchi A, Brunetti F, D’Amico A, Di Carlo A, Lugli P (2003) Tetra-phenyl porphyrin based thin film transistors. Synth Met 138:261–266Google Scholar
  213. 213.
    Shea PB, Kanicki J, Ono N (2005) Field-effect mobility of polycrystalline tetrabenzoporphyrin thin-film transistors. J Appl Phys 98:014503Google Scholar
  214. 214.
    Che CM, Xiang HF, Chui SSY, Xu ZX, Roy VAL, Yan JJ, Fu WF, Lai PT, Williams ID (2008) A high-performance organic field-effect transistor based on platinum(ii) porphyrin: peripheral substituents on porphyrin ligand significantly affect film structure and charge mobility. Chem Asian J 3:1092–1103Google Scholar
  215. 215.
    Shea PB, Kanicki J, Pattison LR, Petroff P, Kawano M, Yamada H, Ono N (2006) Solution-processed nickel tetrabenzoporphyrin thin-film transistors. J Appl Phys 100:034502Google Scholar
  216. 216.
    Shea PB, Pattison LR, Kawano M, Chen C, Chen J, Petroff P, Martin DC, Yamada H, Ono N, Kanicki J (2007) Solution-processed polycrystalline copper tetrabenzoporphyrin thin-film transistors. Synth Met 157:190–197Google Scholar
  217. 217.
    Xu H, Wang Y, Yu G, Xu W, Song Y, Zhang DQ, Liu YQ, Zhu DB (2005) Organic field-effect transistors based on langmuir-blodgett films of an extended porphyrin analogue–cyclo[6]pyrrole. Chem Phys Lett 414:369–373Google Scholar
  218. 218.
    Xu H, Yu G, Xu W, Xu Y, Cui GL, Zhang DQ, Liu YQ, Zhu DB (2005) High-performance field-effect transistors based on langmuir–blodgett films of cyclo[8]pyrrole. Langmuir 21:5391–5395Google Scholar
  219. 219.
    Chen Y, Su W, Bai M, Jiang J, Li X, Liu Y, Wang L, Wang S (2005) High performance organic field-effect transistors based on amphiphilic tris(phthalocyaninato) rare earth triple-decker complexes. J Am Chem Soc 127:15700–15701Google Scholar
  220. 220.
    Sirringhaus H, Brown PJ, Friend RH, Nielsen MM, Bechgaard K, Langeveld-Voss BMW, Spiering AJH, Janssen RAJ, Meijer EW, Herwig P, de Leeuw DM (1999) Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401:685–688Google Scholar
  221. 221.
    Hao XT, Hosokai T, Mitsuo N, Kera S, Okudaira KK, Mase K, Ueno N (2007) Control of the interchain π–π interaction and electron density distribution at the surface of conjugated poly(3-hexylthiophene) thin films. J Phys Chem B 111:10365–10372Google Scholar
  222. 222.
    Bao ZN, Lovinger AJ (1999) Soluble regioregular polythiophene derivatives as semiconducting materials for field-effect transistors. Chem Mater 11:2607–2612Google Scholar
  223. 223.
    Wang GM, Swensen J, Moses D, Heeger AJ (2003) Increased mobility from regioregular poly(3-hexylthiophene) field-effect transistors. J Appl Phys 93:6137–6141Google Scholar
  224. 224.
    Chang JF, Sun BQ, Breiby DW, Nielsen MM, Solling TI, Giles M, McCulloch I, Sirringhaus H (2004) Enhanced mobility of poly(3-hexylthiophene) transistors by spin-coating from high-boiling-point solvents. Chem Mater 16:4772–4776Google Scholar
  225. 225.
    Ong BS, Wu Y, Liu P, Gardner S (2004) High-performance semiconducting polythiophenes for organic thin-film transistors. J Am Chem Soc 126:3378–3379Google Scholar
  226. 226.
    Chabinyc ML, Endicott F, Vogt BD, DeLongchamp DM, Lin EK, Wu Y, Liu P, Ong BS (2006) Effects of humidity on unencapsulated poly(thiophene) thin-film transistors. Appl Phys Lett 88:113514Google Scholar
  227. 227.
    McCulloch I, Bailey C, Giles M, Heeney M, Love I, Shkunov M, Sparrowe D, Tierney S (2005) Influence of molecular design on the field-effect transistor characteristics of terthiophene polymers. Chem Mater 17:1381–1385Google Scholar
  228. 228.
    Kong H, Jung YK, Cho NS, Kang IN, Park JH, Cho S, Shim HK (2009) New semiconducting polymers containing 3,6-dimethyl(thieno[3,2-b]-thiophene or selenopheno[3,2-b]selenophene) for organic thin-film transistors. Chem Mater 21:2650–2660Google Scholar
  229. 229.
    Lim B, Baeg KJ, Jeong HG, Jo J, Kim H, Park JW, Noh YY, Vak D, Park JH, Park JW, Kim DY (2009) A new poly(thienylenevinylene) derivative with high mobility and oxidative stability for organic thin-film transistors and solar cells. Adv Mater 21:2808–2814Google Scholar
  230. 230.
    Kim J, Lim B, Baeg KJ, Noh YY, Khim D, Jeong HG, Yun JM, Kim DY (2011) Highly soluble poly(thienylenevinylene) derivatives with charge-carrier mobility exceeding 1 cm2 V−1 s−1. Chem Mater 23:4663–4665Google Scholar
  231. 231.
    Heeney M, Bailey C, Genevicius K, Shkunov M, Sparrowe D, Tierney S, McCulloch I (2007) Stable polythiophene semiconductors incorporating thieno[2,3-b]-thiophene. J Am Chem Soc 127:1078–1079Google Scholar
  232. 232.
    McCulloch I, Heeney M, Bailey C, Genevicius K, MacDonald I, Shkunov M, Sparrowe D, Tierney S, Wagner R, Zhang W, Chabinyc ML, Kline RJ, McGehee MD, Toney MF (2006) Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat Mater 5:328–333Google Scholar
  233. 233.
    DeLongchamp DM, Kline RJ, Lin EK, Fischer DA, Richter LJ, Lucas LA, Heeney M, McCulloch I, Northrup JE (2007) High carrier mobility polythiophene thin films: structure determination by experiment and theory. Adv Mater 19:833–837Google Scholar
  234. 234.
    Hamadani BH, Gundlach DJ, McCulloch I, Heeney M (2007) Undoped polythiophene field-effect transistors with mobility of 1 cm2 V−1 s−1. Appl Phys Lett 91:243512Google Scholar
  235. 235.
    Chabinyc ML, Toney MF, Kline RJ, McCulloch I, Heeney M (2007) X-ray scattering study of thin films of poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene). J Am Chem Soc 129:3226–3237Google Scholar
  236. 236.
    Kline RJ, DeLongchamp DM, Fischer DA, Lin EK, Heeney M, McCulloch I, Toney MF (2007) Significant dependence of morphology and charge carrier mobility on substrate surface chemistry in high performance polythiophene semiconductor films. Appl Phys Lett 90:062117Google Scholar
  237. 237.
    Li J, Qin F, Li CM, Bao QL, Chan-Park MB, Zhang W, Qin JG, Ong BS (2008) High-performance thin-film transistors from solution-processed dithienothiophene polymer semiconductor nanoparticles. Chem Mater 20:2057–2059Google Scholar
  238. 238.
    Li J, Bao QL, Zhang W, Gong C, Chan-Park MB, Qin JG, Ong BS (2010) Organic thin-film transistors processed from relatively nontoxic, environmentally friendlier solvents. Chem Mater 22:5747–5753Google Scholar
  239. 239.
    Li YN, Wu YL, Liu P, Birau M, Pan HL, Ong BS (2006) Poly(2,5-bis(2-thienyl)-3,6-dialkylthieno[3,2-b]thiophene)s–high-mobility semiconductors for thin-film transistors. Adv Mater 18:3029–3032Google Scholar
  240. 240.
    McCulloch I, Heeney M, Chabinyc ML, DeLongchamp D, Kline RJ, Coelle M, Duffy W, Fischer D, Gundlach D, Hamadani B, Hamilton R, Richter L, Salleo A, Shkunov M, Sporrowe D, Tierney S, Zhong W (2009) Semiconducting thienothiophene copolymers: design, synthesis, morphology, and performance in thin-film organic transistors. Adv Mater 21:1091–1109Google Scholar
  241. 241.
    Fong HH, Pozdin VA, Amassian A, Malliaras GG, Smilgies DM, He MQ, Gasper S, Zhang FX, Sorensen M (2008) Tetrathienoacene copolymers as high mobility, soluble organic semiconductors. J Am Chem Soc 130:13202–13203Google Scholar
  242. 242.
    He MQ, Li JF, Sorensen ML, Zhang FX, Hancock RR, Fong HH, Pozdin VA, Malliaras GG (2009) Alkylsubstituted thienothiophene semiconducting materials: structure-property relationships. J Am Chem Soc 131:11930–11938Google Scholar
  243. 243.
    He MQ, Li JF, Tandia A, Sorensen ML, Zhang FX, Fong HH, Pozdin VA, Malliaras GG (2010) Importance of C2 symmetry for the device performance of a newly synthesized family of fused-ring thiophenes. Chem Mater 22:2770–2779Google Scholar
  244. 244.
    Liu J, Zhang R, Sauve G, Kowalewski T, McCullough RD (2008) Highly disordered polymer field effect transistors: n-alkyl dithieno[3,2-b:2′,3′-d]pyrrole-based copolymers with surprisingly high charge carrier mobilities. J Am Chem Soc 130:13167–13176Google Scholar
  245. 245.
    Liu JY, Zhang R, Osaka I, Mishra S, Javier AE, Smilgies DM, Kowalewski T, McCullough RD (2009) Transistor paint: environmentally stable n-alkyldithienopyrrole and bithiazole-based copolymer thin-film transistors show reproducible high mobilities without annealing. Adv Funct Mater 19:3427–3434Google Scholar
  246. 246.
    Osaka I, Sauve G, Zhang R, Kowalewski T, McCullough RD (2007) Novel thiophene-thiazolothiazole copolymers for organic field-effect transistors. Adv Mater 19:4160–4165Google Scholar
  247. 247.
    Osaka I, Zhang R, Sauve G, Smilgies DM, Kowalewski T, McCullough RD (2009) High-lamellar ordering and amorphous-like π-network in short-chain thiazolothiazole-thiophene copolymers lead to high mobilities. J Am Chem Soc 131:2521–2529Google Scholar
  248. 248.
    Kim DH, Lee BL, Moon H, Kang HM, Jeong EJ, Park J, Han KM, Lee S, Yoo BW, Koo BW, Kim JY, Lee WH, Cho K, Becerril HA, Bao ZN (2009) Liquid-crystalline semiconducting copolymers with intramolecular donor-acceptor building blocks for high-stability polymer transistors. J Am Chem Soc 131:6124–6132Google Scholar
  249. 249.
    Li Y, Wu Y, Ong BS (2006) Polyindolo[3,2-b]carbazoles: a new class of p-channel semiconductor polymers for organic thin-film transistors. Macromolecules 39:6521–6527Google Scholar
  250. 250.
    Osaka I, Takimiya K, McCullough RD (2010) Benzobisthiazole-based semiconducting copolymers showing excellent environmental stability in high-humidity air. Adv Mater 22:4993–4997Google Scholar
  251. 251.
    Zhang W, Smith J, Hamilton R, Heeney M, Kirkpatrick J, Song K, Watkins SE, Anthopoulos T, McCulloch I (2009) Systematic improvement in charge carrier mobility of air stable triarylamine copolymers. J Am Chem Soc 131:10814–14815Google Scholar
  252. 252.
    Beaujuge PM, Fréchet JMJ (2011) Molecular design and ordering effects in π-functional materials for transistor and solar cell applications. J Am Chem Soc 133:20009–20029Google Scholar
  253. 253.
    Facchetti A (2011) π-conjugated polymers for organic electronics and photovoltaic cell applications. Chem Mater 23:733–758Google Scholar
  254. 254.
    Nielsen CB, Turbiez M, McCulloch I (2013) Recent advances in the development of semiconducting DPP-containing polymers for transistor applications. Adv Mater 25:1859–1880Google Scholar
  255. 255.
    Zhang M, Tsao HT, Pisula W, Yang CD, Mishra AK, Müllen K (2007) Field-effect transistors based on a benzothiadiazole-cyclopentadithiophene copolymer. J Am Chem Soc 129:3472–3473Google Scholar
  256. 256.
    Tsao HT, Cho D, Andreasen JW, Rouhanipour A, Breiby DW, Pisula W, Müllen K (2009) The influence of morphology on high-performance polymer field-effect transistors. Adv Mater 21:209–212Google Scholar
  257. 257.
    Zhang WM, Smith J, Watkins SE, Gysel R, McGehee M, Salleo A, Kirkpatrick J, Ashraf S, Anthopoulos T, Heeney M, McCulloch I (2010) Indacenodithiophene semiconducting polymers for high-performance, air-stable transistors. J Am Chem Soc 132:11437–11439Google Scholar
  258. 258.
    Ying L, Hsu BB, Zhan HM, Welch GC, Zalar P, Perez LA, Kramer EJ, Nguyen TQ, Heeger AJ, Wong WY, Bazan GC (2011) Regioregular pyridal[1–3]thiadiazole π-conjugated copolymers. J Am Chem Soc 133:18538–18541Google Scholar
  259. 259.
    Tseng HR, Ying L, Hsu BB, Perez LA, Takacs CJ, Bazan GC, Heeger AJ (2012) High mobility field effect transistors based on macroscopically oriented regioregular copolymers. Nano Lett 12:6353–6357Google Scholar
  260. 260.
    Tseng HR, Phan H, Luo C, Wang M, Perez LA, Patel SN, Ying L, Kramer EJ, Nguyen TQ, Bazan GC, Heeger AJ (2014) High-mobility field-effect transistors fabricated with macroscopic aligned semiconducting polymers. Adv Mater doi:  10.1002/adma.201305084
  261. 261.
    Lei T, Cao Y, Fan YL, Liu CJ, Yuan SC, Pei J (2011) High-performance air-stable organic field-effect transistors: isoindigo-based conjugated polymers. J Am Chem Soc 133:6099–6101Google Scholar
  262. 262.
    Lei T, Cao Y, Zhou X, Peng Y, Bian J, Pei J (2012) Systematic investigation of isoindigo-based polymeric field-effect transistors: design strategy and impact of polymer symmetry and backbone curvature. Chem Mater 24:1762–1770Google Scholar
  263. 263.
    Lei T, Dou JH, Pei J (2012) Influence of alkyl chain branching positions on the hole mobilities of polymer thin-film transistors. Adv Mater 24:6457–6461Google Scholar
  264. 264.
    Mei JG, Kim DH, Ayzner AL, Toney MF, Bao ZN (2011) Siloxane-terminated solubilizing side chains: bringing conjugated polymer backbones closer and boosting hole mobilities in thin-film transistors. J Am Chem Soc 133:20130–20133Google Scholar
  265. 265.
    Fan J, Yuen JD, Cui WB, Seifter J, Mohebbi AR, Wang MF, Zhou HQ, Heeger A, Wudl F (2012) High-hole-mobility field-effect transistors based on co-benzobisthiadiazole-quaterthiophene. Adv Mater 24:6164–6168Google Scholar
  266. 266.
    Osaka I, Shimawaki M, Mori H, Doi I, Miyazaki E, Koganezawa K, Takimiya K (2012) Synthesis, characterization, and transistor and colar cell applications of a naphthobisthiadiazole-based semiconducting polymer. J Am Chem Soc 134:3498–3507Google Scholar
  267. 267.
    Bürgi L, Turbiez M, Pfeiffer R, Bienewald F, Kirner HJ, Winnewisser C (2008) High-mobility ambipolar near-infrared light-emitting polymer field-effect transistors. Adv Mater 20:2217–2224Google Scholar
  268. 268.
    Li YN, Singh SP, Sonar PA (2010) A high mobility p-type dpp-thieno[3,2-b]thiophene copolymer for organic thin-film transistors. Adv Mater 22:4862–4866Google Scholar
  269. 269.
    Li J, Zhao Y, Tan HS, Guo YL, Di CA, Yu G, Liu YQ, Lin M, Lim SH, Zhou YH, Su HB, Ong BS (2012) A stable solution-processed polymer semiconductor with record high-mobility for printed transistors. Sci Rep 2:754Google Scholar
  270. 270.
    Bronstein H, Chen ZY, Ashraf RS, Zhang WM, Du JP, Durrant JR, Tuladhar PS, Song K, Watkins SE, Geerts Y, Wienk MM, Janssen RAJ, Anthopoulos T, Sirringhaus H, Heeney M, McCulloch I (2011) Thieno[3,2-b]thiophene-diketopyrrolopyrrole-containing polymers for high-performance organic field-effect transistors and organic photovoltaic devices. J Am Chem Soc 133:3272–3275Google Scholar
  271. 271.
    Li YN, Sonar P, Singh SP, Soh MS, Meurs MV, Tan J (2011) Annealing-free high-mobility diketopyrrolopyrrole-quaterthiophene copolymer for solution-processed organic thin film transistors. J Am Chem Soc 133:2198–2204Google Scholar
  272. 272.
    Yi ZY, Sun XN, Zhao Y, Guo YL, Chen XG, Qin JG, Yu G, Liu YQ (2012) Diketopyrrolopyrrole-based π-conjugated copolymer containing β-unsubstituted quintetthiophene unit: a promising material exhibiting high hole-mobility for organic thin-film transistors. Chem Mater 24:4350–4356Google Scholar
  273. 273.
    Chen HJ, Guo YL, Yu G, Zhao Y, Zhang J, Gao D, Liu HT, Liu YQ (2012) Highly π-extended copolymers with diketopyrrolopyrrole moieties for high-performance field-effect transistors. Adv Mater 24:4618–4622Google Scholar
  274. 274.
    Kang I, An TK, Hong J, Yun HJ, Kim R, Chung DS, Park CE, Kim YH, Kwon SK (2013) Effect of selenophene in a DPP copolymer incorporating a vinyl group for high-performance organic field-effect transistors. Adv Mater 25:524–528Google Scholar
  275. 275.
    Kang I, Yun HJ, Chung DS, Kwon SK, Kim YH (2013) Record high hole mobility in polymer semiconductors via side-chain engineering. J Am Chem Soc 135:14896–14899Google Scholar
  276. 276.
    Frankevich E, Maruyama Y, Ogata H (1993) Mobility of charge carriers in vapor-phase grown C60 single crystal. Chem Phys Lett 214:39–44Google Scholar
  277. 277.
    Horiuchi K, Nakada K, Uchino S, Hashii S, Hashimoto A, Aoki N, Ochiai Y, Shimizu M (2002) Passivation effects of alumina insulating layer on C60 thin-film field-effect transistors. Appl Phys Lett 81:1911–1912Google Scholar
  278. 278.
    Kitamura M, Aomori S, Na JH, Arakawa Y (2008) Bottom-contact fullerene C60 thin-film transistors with high field-effect mobilities. Appl Phys Lett 93:033313Google Scholar
  279. 279.
    Anthopoulos TD, Singh B, Marjanovic N, Sariciftci NS, Ramil AM, Sitter H, Colle M, de Leeuw DM (2006) High performance n-channel organic field-effect transistors and ring oscillators based on C60 fullerene films. Appl Phys Lett 89:213504Google Scholar
  280. 280.
    Ito Y, Virkar AA, Mannsfeld S, Oh JH, Toney M, Locklin J, Bao ZN (2009) Crystalline ultrasmooth self-assembled monolayers of alkylsilanes for organic field-effect transistors. J Am Chem Soc 131:9396–9404Google Scholar
  281. 281.
    Waldauf C, Schilinsky P, Perisutti M, Hauch J, Brabec CJ (2003) Solution-processed n-type organic thin-film transistors. Adv Mater 15:2084–2088Google Scholar
  282. 282.
    Singh TB, Marjanovic N, Stadler P, Auinger M, Matt GJ, Gunes S, Sariciftci NS, Schwodiauer R, Bauer S (2005) Fabrication and characterization of solution-processed methanofullerene-based organic field-effect transistors. J Appl Phys 97:083714Google Scholar
  283. 283.
    Chikamatsu M, Nagamatsu S, Yoshida Y, Saito K, Yase K, Kikuchi K (2005) Solution-processed n-type organic thin-film transistors with high field-effect mobility. Appl Phys Lett 87:203504Google Scholar
  284. 284.
    Chikamatsu M, Itakura A, Yoshida Y, Azumi R, Yase K (2008) High-performance n-type organic thin-film transistors based on solution-processable perfluoroalkyl-substituted C60 derivatives. Chem Mater 20:7365–7367Google Scholar
  285. 285.
    Haddon RC (1996) C70 thin film transistors. J Am Chem Soc 118:3041–3042Google Scholar
  286. 286.
    Cho S, Seo JH, Lee K, Heeger AJ (2009) Enhanced performance of fullerene n-channel field-effect transistors with titanium sub-oxide injection layer. Adv Funct Mater 19:1459–1464Google Scholar
  287. 287.
    Suglyama H, Nagano T, Nouchi R, Kawasaki N, Ohta Y, Imai K, Tsutsui M, Kubozono Y, Fujiwara A (2007) Transport properties of field-effect transistors with thin films of C76 and its electronic structure. Chem Phys Lett 449:160–164Google Scholar
  288. 288.
    Kubozono Y, Rikiishi Y, Shibata K, Hosokawa T, Fujiki S, Kitagawa H (2004) Structure and transport properties of isomer-separated C82. Phys Rev B 69:165412Google Scholar
  289. 289.
    Shibata K, Kubozono Y, Kanbara T, Hosokawa T, Fujiwara A, Ito Y, Shinohara H (2004) Fabrication and characteristics of C84 fullerene field-effect transistors. Appl Phys Lett 84:2572–2574Google Scholar
  290. 290.
    Nagano T, Sugiyama H, Kuwahara E, Watanabe R, Kusai H, Kashino Y, Kubozono Y (2005) Fabrication of field-effect transistor device with higher fullerene, C88. Appl Phys Lett 87:023501Google Scholar
  291. 291.
    Laquindanum JG, Katz HE, Dodabalapur A, Lovinger AJ (1996) N-channel organic transistor materials based on naphthalene frameworks. J Am Chem Soc 118:11331–11332Google Scholar
  292. 292.
    Tanida S, Noda K, Kawabata H, Matsushige K (2009) N-channel thin-film transistors based on 1,4,5,8-naphthalene tetracarboxylic dianhydride with ultrathin polymer gate buffer layer. Thin Solid Films 518:571–574Google Scholar
  293. 293.
    Katz HE, Lovinger AJ, Johnson J, Kloc C, Siegrist T, Li W, Lin YY, Dodabalapur A (2000) A soluble and air-stable organic semiconductor with high electron mobility. Nature 404:478–481Google Scholar
  294. 294.
    Katz HE, Johnson J, Lovinger AJ, Li WJ (2000) Naphthalene tetracarboxylic diimide-based n-channel transistor semiconductors: structural variation and thiol-enhanced gold contacts. J Am Chem Soc 122:7787–7792Google Scholar
  295. 295.
    Shukla D, Nelson SF, Freeman DC, Rajeswaran M, Ahearn WG, Meyer DM, Carey JT (2008) Thin-film morphology control in naphthalene-diimide-based semiconductors: high mobility n-type semiconductor for organic, thin-film transistors. Chem Mater 20:7486–7491Google Scholar
  296. 296.
    Gawrys P, Boudinet D, Zagorska M, Djurado D, Verilhac JM, Horowitz G, Pecaud J, Pouget S, Pron A (2009) Solution processible naphthalene and perylene bisimides: synthesis, electrochemical characterization and application to organic field effect transistors (OFETs) fabrication. Synth Met 159:1478–1485Google Scholar
  297. 297.
    Tszydel I, Kucinska M, Marszalek T, Rybakiewicz R, Nosal A, Jung J, Gazicki-Lipman M, Pitsalidis C, Gravalidi C, Logothetidis S, Zagorska M, Ulansk J (2012) High-mobility and low turn-on voltage n-channel otfts based on a solution-processable derivative of naphthalene bisimide. Adv Funct Mater 22:3840–3844Google Scholar
  298. 298.
    Oh JH, Suraru SL, Lee WY, Konemann M, Hoffken HW, Roger C, Schmidt R, Chung Y, Chen WC, Wurthner F, Bao ZN (2010) High-performance air-stable n-type organic transistors based on core-chlorinated naphthalene tetracarboxylic diimides. Adv Funct Mater 20:2148–2156Google Scholar
  299. 299.
    Lv A, Li Y, Yue W, Jiang L, Dong H, Zhao G, Meng Q, Jiang W, He Y, Li Z, Wang Z, Hu W (2012) High performance n-type single crystalline transistors of naphthalene bis(dicarboximide) and their anisotropic transport in crystals. Chem Commun 48:5154–5156Google Scholar
  300. 300.
    Jung BJ, Lee K, Sun J, Andreou AG, Katz HE (2010) Air-operable, high-mobility organic transistors with semifluorinated side chains and unsubstituted naphthalenetetracarboxylic diimide cores: high mobility and environmental and bias stress stability from the perfluorooctylpropyl side chain. Adv Funct Mater 20:2930–2944Google Scholar
  301. 301.
    See KC, Landis C, Sarjeant A, Katz HE (2008) Easily synthesized naphthalene tetracarboxylic diimide semiconductors with high electron mobility in air. Chem Mater 20:3609–3616Google Scholar
  302. 302.
    Sun J, Devine R, Dhar BM, Jung BJ, See KC, Katz HE (2009) Improved morphology and performance from surface treatments of naphthalenetetracarboxylic diimide bottom contact field-effect transistors. ACS Appl Mater Interfaces 1:1763–1769Google Scholar
  303. 303.
    Stolte M, Gsanger M, Hofmockel R, Suraru SL, Wurthner F (2012) Improved ambient operation of n-channel organic transistors of solution-sheared naphthalene diimide under bias stress. Phys Chem Chem Phys 14:14181–14185Google Scholar
  304. 304.
    He T, Stolte M, Würthner F (2013) Air-stable n-channel organic single crystal field-effect transistors based on microribbons of core-chlorinated naphthalene diimide. Adv Mater 25:6951–6955Google Scholar
  305. 305.
    Jones BA, Facchetti A, Marks TJ, Wasielewski MR (2007) Cyanonaphthalene diimide semiconductors for air-stable, flexible, and optically transparent n-channel field-effect transistors. Chem Mater 19:2703–2705Google Scholar
  306. 306.
    Zhao Y, Di CA, Gao X, Hu Y, Guo Y, Zhang L, Liu Y, Wang J, Hu W, Zhu D (2011) All-solution-processed, high-performance n-channel organic transistors and circuits: toward low-cost ambient electronics. Adv Mater 23:2448–2453Google Scholar
  307. 307.
    Zhang F, Hu Y, Schuettfort T, Di CA, Gao X, McNeill CR, Thomsen L, Mannsfeld SC, Yuan W, Sirringhaus H, Zhu D (2013) Critical role of alkyl chain branching of organic semiconductors in enabling solution-processed n-channel organic thin-film transistors with mobility of up to 3.50 cm2 V−1 s−1. J Am Chem Soc 135:2338–2349Google Scholar
  308. 308.
    Hu Y, Qin Y, Gao X, Zhang F, Di CA, Zhao Z, Li H, Zhu D (2012) One-pot synthesis of core-expanded naphthalene diimides: enabling n-substituent modulation for diverse n-type organic materials. Org Lett 14:292–295Google Scholar
  309. 309.
    Chen X, Guo Y, Tan L, Yang G, Li Y, Zhang G, Liu Z, Xu W, Zhang D (2013) Dithiazole-fused naphthalene diimides toward new n-type semiconductors. J Mater Chem C 1:1087–1092Google Scholar
  310. 310.
    Luo H, Cai Z, Tan L, Guo Y, Yang G, Liu Z, Zhang G, Zhang D, Xu W, Liu Y (2013) Solution-processed core-extended naphthalene diimides toward organic n-type and ambipolar semiconductors. J Mater Chem C 1:2688–2695Google Scholar
  311. 311.
    Chen X, Wang J, Zhang G, Liu Z, Xu W, Zhang D (2013) New core-expanded naphthalene diimides with different functional groups for air-stable solution-processed organic n-type semiconductors. New J Chem 37:1720–1727Google Scholar
  312. 312.
    Deng P, Yan Y, Wang SD, Zhang Q (2012) Naphthoylene(trifluoromethyl-benzimidazole)-dicarboxylic acid imides for high-performance n-type organic field-effect transistors. Chem Commun 48:2591–2593Google Scholar
  313. 313.
    Hwang DK, Dasari RR, Fenoll M, Alain-Rizzo V, Dindar A, Shim JW, Deb N, Fuentes-Hernandez C, Barlow S, Bucknall DG, Audebert P, Marder SR, Kippelen B (2012) Stable solution-processed molecular n-channel organic field-effect transistors. Adv Mater 24:4445–4450Google Scholar
  314. 314.
    Tiwari SP, Kim J, Knauer KA, Hwang DK, Polander LE, Barlow S, Marder SR, Kippelen B (2012) Complementary-like inverters based on an ambipolar solution-processed molecular bis(naphthalene diimide)-dithienopyrrole derivative. Org Electron 13:1166–1170Google Scholar
  315. 315.
    Ostrick JR, Dodabalapur A, Torsi L, Lovinger AJ, Kwock EW, Miller TM, Galvin M, Berggren M, Katz HE (1997) Conductivity-type anisotropy in molecular solids. J Appl Phys 81:6804–6808Google Scholar
  316. 316.
    Yamada K, Takeya J, Takenobu T, Iwasa Y (2008) Effects of gate dielectrics and metal electrodes on air-stable n-channel perylene tetracarboxylic dianhydride single-crystal field-effect transistor. Appl Phys Lett 92:253311Google Scholar
  317. 317.
    Chesterfield RJ, McKeen JC, Newman CR, Frisbie CD, Ewbank PC, Mann KR, Miller LL (2004) Variable temperature film and contact resistance measurements on operating n-channel organic thin film transistors. J Appl Phys 95:6396–6405Google Scholar
  318. 318.
    Malenfant PRL, Dimitrakopoulos CD, Gelorme JD, Kosbar LL, Graham TO, Curioni A, Andreoni W (2002) N-type organic thin-film transistor with high field-effect mobility based on a N,N′-dialkyl-3,4,9,10-perylene tetracarboxylic diimide derivative. Appl Phys Lett 80:2517–2519Google Scholar
  319. 319.
    Chesterfield RJ, McKeen JC, Newman CR, Ewbank PC, da Silva Filho DA, Bredas JL, Miller LL, Mann KR, Frisbie CD (2004) Organic thin film transistors based on N-alkyl perylene diimides: charge transport kinetics as a function of gate voltage and temperature. J Phys Chem B 108:19281–19292Google Scholar
  320. 320.
    Gundlach DJ, Pernstich KP, Wilckens G, Gruter M, Haas S, Batlogg B (2005) High mobility n-channel organic thin-film transistors and complementary inverters. J Appl Phys 98:064502Google Scholar
  321. 321.
    Rost C, Gundlach DJ, Karg S, Riess W (2004) Ambipolar organic field-effect transistor based on an organic heterostructure. J Appl Phys 95:5782–5787Google Scholar
  322. 322.
    Tatemichi S, Ichikawa M, Koyama T, Taniguchi Y (2006) High mobility N-type thin-film transistors based on N,N-ditridecyl perylene diimide with thermal treatments. Appl Phys Lett 89:112108Google Scholar
  323. 323.
    Oh JH, Liu S, Bao Z, Schmidt R, Wurthner F (2007) Air-stable n-channel organic thin-film transistors with high field-effect mobility based on N,N′-bis(heptafluorobutyl)-3,4:9,10-perylene diimide. Appl Phys Lett 91:212107Google Scholar
  324. 324.
    Schmidt R, Oh JH, Sun YS, Deppisch M, Krause AM, Radacki K, Braunschweig H, Konemann M, Erk P, Bao ZN, Wurthner F (2009) High-performance air-stable n-channel organic thin film transistors based on halogenated perylene bisimide semiconductors. J Am Chem Soc 131:6215–6228Google Scholar
  325. 325.
    Oh JH, Sun YS, Schmidt R, Toney MF, Nordlund D, Konemann M, Wurthner F, Bao ZN (2009) Interplay between energetic and kinetic factors on the ambient stability of n-channel organic transistors based on perylene diimide derivatives. Chem Mater 21:5508–5518Google Scholar
  326. 326.
    Chen HZ, Ling MM, Mo X, Shi MM, Wang M, Bao Z (2007) Air stable n-channel organic semiconductors for thin film transistors based on fluorinated derivatives of perylene diimides. Chem Mater 19:816–824Google Scholar
  327. 327.
    Ling MM, Erk P, Gomez M, Koenemann M, Locklin J, Bao ZN (2007) Stable n-channel organic semiconductors based on perylene diimide derivatives without strong electron withdrawing groups. Adv Mater 19:1123–1127Google Scholar
  328. 328.
    Oh JH, Lee HW, Mannsfeld S, Stoltenberg RM, Jung E, Jin YW, Kim JM, Yoo JB, Bao ZN (2009) Solution-processed, high-performance n-channel organic microwire transistors. Proc Natl Acad Sci USA 106:6065–6070Google Scholar
  329. 329.
    Yoo B, Jung T, Basu D, Dodabalapur A, Jones BA, Facchetti A, Wasielewski MR, Marks TJ (2006) High-mobility bottom-contact n-channel organic transistors and their use in complementary ring oscillators. Appl Phys Lett 88:082104Google Scholar
  330. 330.
    Weitz RT, Amsharov K, Zschieschang U, Villas EB, Goswami DK, Burghard M, Dosch H, Jansen M, Kern K, Klauk H (2008) Organic n-channel transistors based on core-cyanated perylene carboxylic diimide derivatives. J Am Chem Soc 130:4637–4645Google Scholar
  331. 331.
    Rivnay J, Jimison LH, Northrup JE, Toney MF, Noriega R, Lu S, Marks TJ, Facchetti A, Salleo A (2009) Large modulation of carrier transport by grain-boundary molecular packing and microstructure in organic thin films. Nat Mater 8:952–958Google Scholar
  332. 332.
    Baeg KJ, Khim D, Kim JH, Kang M, You IK, Kim DY, Noh YY (2011) Improved performance uniformity of inkjet printed n-channel organic field-effect transistors and complementary inverters. Org Electron 12:634–640Google Scholar
  333. 333.
    Jones BA, Ahrens MJ, Yoon MH, Facchetti A, Marks TJ, Wasielewski MR (2004) High-mobility air-stable n-type semiconductors with processing versatility: dicyanoperylene-3,4:9,10-bis(dicarboximides). Angew Chem Int Ed 43:6363–6366Google Scholar
  334. 334.
    Soeda J, Uemura T, Mizuno Y, Nakao A, Nakazawa Y, Facchetti A, Takeya J (2011) High electron mobility in air for N,N’-1H,1H-perfluorobutyldicyanoperylene carboxydi-imide solution-crystallized thin-film transistors on hydrophobic surfaces. Adv Mater 23:3681–3865Google Scholar
  335. 335.
    Molinari AS, Alves H, Chen Z, Facchetti A, Morpurgo AF (2009) High electron mobility in vacuum and ambient for PDIF-CN2 single-crystal transistors. J Am Chem Soc 131:2462–2463Google Scholar
  336. 336.
    Minder NA, Ono S, Chen Z, Facchetti A, Morpurgo AF (2012) Band-like electron transport in organic transistors and implication of the molecular structure for performance optimization. Adv Mater 24:503–508Google Scholar
  337. 337.
    Gsänger M, Oh JH, Könemann M, Höffken HW, Krause A-M, Bao Z, Würthner F (2010) A crystal-engineered hydrogen-bonded octachloroperylene diimide with a twisted core: an n-channel organic semiconductor. Angew Chem Int Ed 49:740–743Google Scholar
  338. 338.
    Zhang J, Tan L, Jiang W, Hua W, Wang Z (2013) N-alkyl substituted di(perylene bisimides) as air-stable electron transport materials for solution-processible thin-film transistors with enhanced performance. J Mater Chem C 1:3200–3206Google Scholar
  339. 339.
    Lv A, Puniredd SR, Zhang J, Li Z, Zhu H, Jiang W, Dong H, He Y, Jiang L, Li Y, Pisula W, Meng Q, Hu W, Wang Z (2012) High mobility, air stable, organic single crystal transistors of an n-type diperylene bisimide. Adv Mater 24:2626–2630Google Scholar
  340. 340.
    Yue W, Lv A, Gao J, Jiang W, Hao L, Li C, Li Y, Polander LE, Barlow S, Hu W, Motta SD, Negri F, Marder SR, Wang Z (2012) Hybrid rylene arrays via combination of stille coupling and C–H transformation as high-performance electron transport materials. J Am Chem Soc 134:5770–5773Google Scholar
  341. 341.
    Zheng Q, Huang J, Sarjeant A, Katz HE (2008) Pyromellitic diimides: minimal cores for high mobility n-channel transistor semiconductors. J Am Chem Soc 130:14410–14411Google Scholar
  342. 342.
    Chen SC, Ganeshan D, Cai D, Zheng Q, Yin Z, Wang F (2013) High performance n-channel thin-film field-effect transistors based on angular-shaped naphthalene tetracarboxylic diimides. Org Electron 14:2859–2865Google Scholar
  343. 343.
    Mohebbi AR, Munoz C, Wudl F (2011) Synthesis and characterization of 2,8-diazaperylene-1,3,7,9-tetraone, a new anthracene diimide containing six-membered imide rings. Org Lett 13:2560–2563Google Scholar
  344. 344.
    Wang Z, Kim C, Facchetti A, Marks TJ (2007) Anthracenedicarboximides as air-stable n-channel semiconductors for thin-film transistors with remarkable current on-off ratios. J Am Chem Soc 129:13362–13363Google Scholar
  345. 345.
    Usta H, Kim C, Wang Z, Lu S, Huang H, Facchetti A, Marks TJ (2012) Anthracenedicarboximide-based semiconductors for air-stable, n-channel organic thin-film transistors: materials design, synthesis, and structural characterization. J Mater Chem 22:4459–4472Google Scholar
  346. 346.
    Katsuta S, Tanaka K, Maruya Y, Mori S, Masuo S, Okujima T, Uno H, Nakayama K, Yamada H (2011) Synthesis of pentacene-, tetracene- and anthracene disimides using double-cyclization reaction mediated by bismuth(III) triflate. Chem Commun 47:10112–10114Google Scholar
  347. 347.
    Chang J, Qu H, OOI Z-E, Zhang J, Chen Z, Wu J, Chi C (2013) 6,13-dicyano pentacene-2,3:9,10-bis(dicarboximide) for solution-processed air-stable n-channel field effect transistors and complementary circuit. J Mater Chem C 1: 456–462Google Scholar
  348. 348.
    Petit M, Hayakawa R, Shirai Y, Wakayama Y, Hill JP, Ariga K, Chikyow T (2008) Growth and electrical properties of N,N’-bis(n-pentyl)terrylene-3,4:11,12-tetracarboximide thin films. Appl Phys Lett 92:163301Google Scholar
  349. 349.
    Liu C, Liu Z, Lemke HT, Tsao HN, Naber RCG, Li Y, Banger K, Müllen K, Nielsen MM, Sirringhaus H (2010) High-performance solution-deposited ambipolar organic transistors based on terrylene diimides. Chem Mater 22:2120–2124Google Scholar
  350. 350.
    Tsao HN, Pisula W, Liu ZH, Osikowicz W, Salaneck WR, Müllen K (2008) From ambi- to unipolar behavior in discotic dye field-effect transistors. Adv Mater 20:2715–2719Google Scholar
  351. 351.
    Li JL, Chang JJ, Tan HS, Jiang H, Chen XD, Chen ZK, Zhang J, Wu JS (2012) Disc-like 7,14-dicyano-ovalene-3,4:10,11-bis(dicarboximide) as a solution-processible n-type semiconductor for air stable field-effect transistors. Chem Sci 3:846–850Google Scholar
  352. 352.
    An ZZ, Yu JS, Domercq B, Jones SC, Barlow S, Kippelen B, Marder SR (2009) Room-temperature discotic liquid-crystalline coronene diimides exhibiting high charge-carrier mobility in air. J Mater Chem 19:6688–6698Google Scholar
  353. 353.
    Li H, Kim FS, Ren G, Hollenbeck EC, Subramaniyan S, Jenekhe SA (2013) Tetraazabenzodifluoranthene diimides: building blocks for solution-processable n-type organic semiconductors. Angew Chem Int Ed 52:5513–5517Google Scholar
  354. 354.
    Handa S, Miyazaki E, Takimiya K, Kunugi Y (2007) Solution-processible n-channel organic field-effect transistors based on dicyanomethylene-substituted terthienoquinoid derivative. J Am Chem Soc 129:11684–16685Google Scholar
  355. 355.
    Suzuki Y, Miyazaki E, Takimiya K (2010) (Alkyloxy)carbonyl)cyanomethylene-substituted thienoquinoidal compounds: a new class of soluble n-channel organic semiconductors for air-stable organic field-effect transistors. J Am Chem Soc 132:10453–10466Google Scholar
  356. 356.
    Qiao YL, Zhang J, Xu W, Zhu DB (2012) Incorporation of pyrrole to oligothiophene-based quinoids endcapped with dicyanomethylene: a new class of solution processable n-channel organic semiconductors for air-stable organic field-effect transistors. J Mater Chem 22:5706–5714Google Scholar
  357. 357.
    Wu QH, Li RJ, Hong W, Li HX, Gao XK, Zhu DB (2011) Dicyanomethylene-substituted fused tetrathienoquinoid for high-performance, ambient-stable, solution-processable n-channel organic thin-film transistors. Chem Mater 23:3138–3140Google Scholar
  358. 358.
    Qiao Y, Guo Y, Yu C, Zhang F, Xu W, Liu Y, Zhu D (2012) Diketopyrrolopyrrole-containing quinoidal small molecules for high-performance, air-stable, and solution-processable n-channel organic field-effect transistors. J Am Chem Soc 134:4084–4087Google Scholar
  359. 359.
    Cai X, Burand MW, Newman CR, da Silva Filho DA, Pappenfus TM, Bader MM, Bredas JL, Mann KR, Frisbie CD (2006) N- and p-channel transport behavior in thin film transistors based on tricyanovinyl-capped oligothiophenes. J Phys Chem B 110:14590–14597Google Scholar
  360. 360.
    Yoon WS, Park SK, Cho I, Oh JA, Kim JH, Park SY (2013) High-mobility n-type organic transistors based on a crystallized diketopyrrolopyrrole derivative. Adv Funct Mater 23:3519–3524Google Scholar
  361. 361.
    Ortiz RP, Facchetti A, Marks TJ, Casado J, Zgierski MZ, Kozaki M, Hernandez V, Navarrete JTL (2009) Ambipolar organic field-effect transistors from cross-conjugated aromatic quaterthiophenes; comparisons with quinoidal parent materials. Adv Funct Mater 19:386–394Google Scholar
  362. 362.
    Yue W, He T, Stolte M, Gsängera M, Würthner F (2014) Cyanated isoindigos for n-type and ambipolar organic thin film transistors. Chem Commun 50:545–547Google Scholar
  363. 363.
    Hong W, Guo C, Sun B, Yan Z, Huang C, Hu Y, Zheng Y, Facchetti A, Li Y (2013) Cyano-disubstituted dipyrrolopyrazinedione (CNPzDP) dmall molecules for solution processed n-channel organic thin-film transistors. J Mater Chem C 1:5624–5627Google Scholar
  364. 364.
    Sakamoto Y, Suzuki T, Kobayashi M, Gao Y, Fukai Y, Inoue Y, Sato F, Tokito S (2004) Perfluoropentacene: high-performance p–n junctions and complementary circuits with pentacene. J Am Chem Soc 126:8138–8140Google Scholar
  365. 365.
    Kikuzawa Y, Mori T, Takeuchi H (2007) Synthesis of 2,5,8,11,14,17-Hexafluoro-hexa-perihexabenzocoronene for n-type organic field-effect transistors. Org Lett 9:4817–4820Google Scholar
  366. 366.
    Ichikawa M, Kato T, Uchino T, Tsuzuki T, Inoue M, Jeon HG, Koyama T, Taniguchi Y (2010) Thin-film and single-crystal transistors based on a triflkuoromethyl-substituted alternating (thiophene/phenylene)-co-oligomer. Org Electron 11:1549–1554Google Scholar
  367. 367.
    Youn J, Huang PY, Huang YW, Chen MC, Lin YJ, Huang H, Ortiz RP, Stern C, Chung MC, Feng CY, Chen LH, Facchetti A, Marks TJ (2012) Versatile α, ω-disubstituted tetrathienoacene semiconductors for high performance organic thin-film transistors. Adv Funct Mater 22:48–60Google Scholar
  368. 368.
    Shoji K, Nishida J, Kumaki D, Tokito S, Yamashita Y (2010) Synthesis and FET characteristics of phenylene-vinylene and anthracene-vinylene compounds containing cyano groups. J Mater Chem 20:6472–6478Google Scholar
  369. 369.
    Yun SW, Kim JH, Shin S, Yang H, An BK, Yang L, Park SY (2012) High-performance n-type organic semiconductors: incorporating specific electron-withdrawing motifs to achieve tight molecular stacking and optimized energy levels. Adv Mater 24:911–915Google Scholar
  370. 370.
    Kim JH, Chung JW, Jung Y, Yoon SJ, An BK, Huh HS, Lee SW, Park SY (2010) High performance n-type organic transistors based on a distyrylthiophene derivative. J Mater Chem 20:10103–10106Google Scholar
  371. 371.
    Park YI, Lee JS, Kim BJ, Kim B, Lee J, Kim DH, Oh SY, Cho JH, Park JW (2011) High-performance stable n-type indenofluorenedione field-effect transistors. Chem Mater 23:4038–4044Google Scholar
  372. 372.
    Liang ZX, Tang Q, Liu J, Li JH, Yan F, Miao Q (2010) N-type organic semiconductors based on π-deficient pentacenequinones: synthesis, electronic structures, molecular packing, and thin film transistors. Chem Mater 22:6438–6443Google Scholar
  373. 373.
    Yoon MH, Kim C, Facchetti A, Marks TJ (2006) Gate dielectric chemical structure-organic field-effect transistor performance correlations for electron, hole, and ambipolar organic semiconductors. J Am Chem Soc 128:12851–12869Google Scholar
  374. 374.
    Schols S, Van Willigenburg L, Müller R, Bode D, Debucquoy M, De Jonge S, Genoe J, Heremans P, Lu S, Facchetti A (2008) Influence of the contact metal on the performance of n-type carbonyl-functionalized quaterthiophene organic thin-film transistors. Appl Phys Lett 93:263303Google Scholar
  375. 375.
    Ando S, Nishida J, Tada H, Inoue Y, Tokito S, Yamashita Y (2005) High performance n-type organic field-effect transistors based on π-electronic systems with trifluoromethylphenyl groups. J Am Chem Soc 127:5336–5337Google Scholar
  376. 376.
    Kumaki D, Ando S, Shimono S, Yamashita Y, Umeda T, Tokito S (2007) Significant improvement of electron mobility in organic thin-film transistors based on thiazolothiazole derivative by employing self-assembled monolayer. Appl Phys Lett 90:053506Google Scholar
  377. 377.
    Mamada M, Nishida JI, Kumaki D, Tokito S, Yamashita Y (2007) n-Type organic field-effect transistors with high electron mobilities based on thiazole-thiazolothiazole conjugated molecules. Chem Mater 19:5404–5409Google Scholar
  378. 378.
    Mamada M, Kumaki D, Nishida J, Tokito S, Yamashita Y (2010) Novel semiconducting quinone for air-stable n-type organic field-effect transistors. ACS Appl Mater Interfaces 2:1303–1307Google Scholar
  379. 379.
    Ie Y, Ueta M, Nitani M, Tohnai N, Miyata M, Tada H, Aso Y (2012) Air-stable n-type organic field-effect transistors based on 4,9-dihydro-s-indaceno[1,2-b:5,6-b′]dithiazole-4,9-dione unit. Chem Mater 24:3285–3293Google Scholar
  380. 380.
    Di CA, Li J, Yu G, Xiao Y, Guo YL, Liu YQ, Qian XH, Zhu DB (2008) Trifluoromethyltriphenodioxazine: air-stable and high-performance n-type semiconductor. Org Lett 10:3025–3028Google Scholar
  381. 381.
    Islam MM, Pola S, Tao YT (2011) High mobility n-channel single-crystal field-effect transistors based on 5,7,12,14-Tetrachloro-6,13-diazapentacene. Chem Commun 47:6356–6358Google Scholar
  382. 382.
    Liang Z, Tang Q, Xu J, Miao Q (2011) Soluble and stable N-heteropentacenes with high field-effect mobility. Adv Mater 23:1535–1539Google Scholar
  383. 383.
    Babel A, Jenekhe SA (2003) High electron mobility in ladder polymer field-effect transistors. J Am Chem Soc 125:13656–13657Google Scholar
  384. 384.
    Briseno AL, Mannsfeld SCB, Shamberger PJ, Ohuchi FS, Bao ZN, Jenekhe SA, Xia YN (2008) Self-assembly, molecular packing, and electron transport in n-type polymer semiconductor nanobelts. Chem Mater 20:4712–4719Google Scholar
  385. 385.
    Briseno AL, Kim FS, Babel A, Xia YN, Jenekhe SA (2011) N-channel polymer thin film transistors with long-term air-stability and durability and their use in complementary inverters. J Mater Chem 21:16461–16466Google Scholar
  386. 386.
    Durban MM, Kazarinoff PD, Segawa Y, Luscombe CK (2011) Synthesis and characterization of solution-processable ladderized n-type naphthalene bisimide copolymers for OFET applications. Macromolecules 44:4721–4728Google Scholar
  387. 387.
    Yan H, Chen ZH, Zheng Y, Newman C, Quinn JR, Dötz F, Kastler M, Facchetti A (2009) A high-mobility electron-transporting polymer for printed transistors. Nature 457:679–686Google Scholar
  388. 388.
    Durban MM, Kazarinoff PD, Luscombe CK (2010) Synthesis and characterization of thiophene-containing naphthalene diimide n-type copolymers for OFET applications. Macromolecules 43:6348–6352Google Scholar
  389. 389.
    Huang H, Chen Z, Ortiz RP, Newman C, Usta H, Lou S, Youn J, Noh YY, Baeg KJ, Chen LX, Facchetti A, Marks TJ (2012) Combining electron-neutral building blocks with intramolecular “conformational locks” affords stable, high-mobility p- and n-channel polymer semiconductors. J Am Chem Soc 134:10966–10973Google Scholar
  390. 390.
    Zhou W, Wen Y, Ma L, Liu Y, Zhan X (2012) Conjugated polymers of rylene diimide and phenothiazine for n-channel organic field-effect transistors. Macromolecules 45:4115–4121Google Scholar
  391. 391.
    Letizia JA, Salata MR, Tribout CM, Facchetti A, Ratner MA, Marks TJ (2008) N-channel polymers by design: optimizing the interplay of solubilizing substituents, crystal packing, and field-effect transistor characteristics in polymeric bithiophene-imide semiconductors. J Am Chem Soc 130:9679–9694Google Scholar
  392. 392.
    Zhan X, Tan Z, Domercq B, An Z, Zhang X, Barlow S, Li Y, Zhu D, Kippelen B, Marder SR (2007) A high-mobility electron-transport polymer with broad absorption and its use in field-effect transistors and all-polymer solar cells. J Am Chem Soc 129:7246–7247Google Scholar
  393. 393.
    Zhao X, Wen Y, Ren L, Ma L, Liu Y, Zhan X (2012) An acceptor–acceptor conjugated copolymer based on perylene diimide for high mobility n-channel transistor in air. J Polym Sci, Part A: Polym Chem 50:4266–4271Google Scholar
  394. 394.
    Izuhara D, Swager TM (2009) Poly(pyridinium phenylene)s: water-soluble n-type polymers. J Am Chem Soc 131:17724–17725Google Scholar
  395. 395.
    Kanimozhi C, Yaacobi-Gross N, Chou KW, Amassian A, Anthopoulos TD, Patil S (2012) Diketopyrrolopyrrole-diketopyrrolopyrrole-based conjugated copolymer for high-mobility organic field-effect transistors. J Am Chem Soc 134:16532–16535Google Scholar
  396. 396.
    Park JH, Jung EH, Jung JW, Jo WH (2013) A fluorinated phenylene unit as a building block for high-performance n-type semiconducting polymer. Adv Mater 25:2583–2588Google Scholar
  397. 397.
    Lei T, Dou JH, Cao XY, Wang JY, Pei J (2013) Electron-deficient poly(p-phenylene vinylene) provides electron mobility over 1 cm2 V−1 s−1 under ambient conditions. J Am Chem Soc 135:12168–12171Google Scholar
  398. 398.
    Yan Z, Sun B, Li Y (2013) Novel stable (3e,7e)-3,7-bis(2-oxoindolin-3-ylidene)-benzo[1,2-b:4,5-b′]difuran-2,6(3h,7h)-dione based donor-acceptor polymer semiconductors for n-type organic thin film transistors. Chem Commun 49:3790–3792Google Scholar
  399. 399.
    Lei T, Dou J, Cao X, Wang J, Pei J (2013) A BDOPV-based donor-acceptor polymer for high-performance n-type and oxygen-doped ambipolar field-effect transistors. Adv Mater 25:6589–6593Google Scholar
  400. 400.
    Tang ML, Reichardt AD, Miyaki N, Stoltenberg RM, Bao Z (2008) Ambipolar, high performance, acene-based organic thin film transistors. J Am Chem Soc 130:6064–6065Google Scholar
  401. 401.
    Liang Z, Tang Q, Mao R, Liu D, Xu J, Miao Q (2011) The position of nitrogen in N-heteropentacenes matters. Adv Mater 23:5514–5518Google Scholar
  402. 402.
    Song CL, Ma CB, Yang F, Zeng WJ, Zhang HL, Gong X (2011) Synthesis of tetrachloro-azapentacene as an ambipolar organic semiconductor with high and balanced carrier mobilities. Org Lett 13:2880–2883Google Scholar
  403. 403.
    Xia H, Liu DQ, Xu XM, Miao Q (2013) Ambipolar organic semiconductors from electron-accepting cyclopenta-fused anthracene. Chem Commun 49:4301–4303Google Scholar
  404. 404.
    Irimia-Vladu M, Glowacki ED, Troshin PA, Schwabegger G, Leonat L, Susarova DK, Krystal O, Ullah M, Kanbur Y, Bodea MA, Razumov VF, Sitter H, Bauer S, Sariciftci NS (2011) Indigo-a natural pigment for high performance ambipolar organic field effect transistors and circuits. Adv Mater 24:375–380Google Scholar
  405. 405.
    Glowacki ED, Leonat L, Voss G, Bodea MA, Bozkurt Z, Ramil AM, Irimia-Vladu M Bauer S, Sariciftci NS (2011) Ambipolar organic field effect transistors and inverters with the natural material tyrian purple. AIP Adv 1: 042132Google Scholar
  406. 406.
    Nakanotani H, Saito M, Nakamura H, Adachi C (2009) Blue-light-emitting ambipolar field-effect transistors using an organic single crystal of 1,4-Bis(4-methylstyryl)benzene. Appl Phys Lett 95:033308Google Scholar
  407. 407.
    Tan LX, Guo YL, Yang Y, Zhang GX, Zhang DQ, Yu G, Xu W, Liu YQ (2012) New tetrathiafulvalene fused-naphthalene diimides for solution-processible and air-stable p-type and ambipolar organic semiconductors. Chem Sci 3:2530–2541Google Scholar
  408. 408.
    Wang L, Zhang X, Tian H, Lu Y, Geng Y, Wang F (2013) A cyano-terminated dithienyldiketopyrrolopyrrole dimer as a solution processable ambipolar semiconductor under ambient conditions. Chem Commun 49:11272–11274Google Scholar
  409. 409.
    Sonar P, Singh SP, Li Y, Soh MS, Dodabalapur A (2010) A low-bandgap diketopyrrolopyrrole-benzothiadiazole based copolymer for high-mobility ambipolar organic thin-film transistors. Adv Mater 22:5409–5413Google Scholar
  410. 410.
    Ha TJ, Sonar P, Cobb B, Dodabalapur A (2012) Charge transport and density of trap states in balanced high mobility ambipolar organic thin-film transistors. Org Electron 13:136–141Google Scholar
  411. 411.
    Sonar P, Foong TR, Singh SP, Li Y (2012) A furan-containing conjugated polymer for high mobility ambipolar organic thin film transistors. Chem Commun 48:8383–8385Google Scholar
  412. 412.
    Kronemeijer AJ, Gili E, Shahid M, Rivnay J, Salleo A, Heeney M, Sirringhaus HA (2012) A selenophene-based low-bandgap donor-acceptor polymer leading to fast ambipolar logic. Adv Mater 24:1558–1565Google Scholar
  413. 413.
    Mohebbi AR, Yuen JD, Fan J, Munoz C, Wang M, Shirazi RS, Seifter J, Wudl F (2011) Emeraldicene as an acceptor moiety: balanced-mobility, ambipolar, organic thin-film transistors. Adv Mater 23:4644–4688Google Scholar
  414. 414.
    Yuen JD, Fan J, Seifter J, Lim B, Hufschmid R, Heeger AJ, Wudl F (2011) High performance weak donor-acceptor polymers in thin film transistors: effect of the acceptor on electronic properties, ambipolar conductivity, mobility, and thermal stability. J Am Chem Soc 13:20799–20807Google Scholar
  415. 415.
    Li Y, Sun B, Sonar P, Singh SP (2012) Solution processable Poly(2,5-dialkyl-2,5-dihydro-3,6-di-2-thienylpyrrolo[3,4-c]pyrrole-1,4-dione) for ambipolar organic thin film transistors. Org Electron 13:1606–1613Google Scholar
  416. 416.
    Hong W, Sun B, Aziz H, Park WT, Noh YY, Li YA (2012) A conjugated polyazine containing diketopyrrolopyrrole for ambipolar organic thin film transistors. Chem Commun 48:8413–8415Google Scholar
  417. 417.
    Li Y, Singh SP, Sonar PA (2010) A high mobility p-Type DPP-thieno[3,2-b]thiophene copolymer for organic thin-film transistors. Adv Mater 22:4862–4866Google Scholar
  418. 418.
    Chen Z, Lee MJ, Ashraf RS, Gu Y, Albert-Seifried S, Nielsen MM, Schroeder B, Anthopoulos TD, Heeney M, McCulloch I, Sirringhaus H (2012) High-performance ambipolar diketopyrrolopyrrole-thieno[3,2-b]thiophene copolymer field-effect transistors with balanced hole and electron mobilities. Adv Mater 24:647–652Google Scholar
  419. 419.
    Lee HS, Lee JS, Cho S, Kim H, Kwak KW, Yoon Y, Son SK, Kim H, Ko MJ, Lee DK, Kim JY, Park S, Choi DH, Oh SY, Cho JH, Kim B (2012) Crystallinity-controlled naphthalene-alt-diketopyrrolopyrrole copolymers for high-performance ambipolar field effect transistors. J Phys Chem C 116:26204–26213Google Scholar
  420. 420.
    Lin HW, Lee WY, Chen WC (2012) Selenophene-DPP donor-acceptor conjugated polymer for high performance ambipolar field-effect transistor and nonvolatile memory applications. J Mater Chem 22:2120–2128Google Scholar
  421. 421.
    Lee J, Han AR, Kim J, Kim Y, Oh JH, Yang C (2012) Solution-processable ambipolar diketopyrrolopyrrole—selenophene polymer with unprecedentedly high hole and electron mobilities. J Am Chem Soc 134:20713–20721Google Scholar
  422. 422.
    Lee J, Han AR, Yu H, Shin T, Yang C, Oh JH (2013) Boosting the ambipolar performance of solution-processable polymer semiconductors via hybrid side-chain engineering. J Am Chem Soc 135:9540–9547Google Scholar
  423. 423.
    Lei T, Dou JH, Ma ZJ, Yao CH, Liu CJ, Wang JY, Pei J (2012) Ambipolar polymer field-effect transistors based on fluorinated isoindigo: high performance and improved ambient stability. J Am Chem Soc 134:20025–20028Google Scholar
  424. 424.
    Lei T, Dou JH, Ma ZJ, Liu CJ, Wang JY, Pei J (2013) Chlorination as a useful method to modulate conjugated polymers: balanced and ambient-stable ambipolar high-performance field-effect transistors and inverters based on chlorinated isoindigo polymers. Chem Sci 4:2447–2452Google Scholar
  425. 425.
    Ashraf RS, Kronemeijer AJ, James DI, Sirringhaus H, McCulloch I (2012) A new thiophene substituted isoindigo based copolymer for high performance ambipolar transistors. Chem Commun 48:3939–3941Google Scholar
  426. 426.
    Kim FS, Guo XG, Watson MD, Jenekhe SA (2010) High-mobility ambipolar transistors and high-gain inverters from a donor-acceptor copolymer semiconductor. Adv Mater 22:478–482Google Scholar
  427. 427.
    Guo XG, Kim FS, Seger MJ, Jenekhe SA, Watson MD (2012) n-type and ambipolar polymer semiconductors based on naphthalene diimide: synthesis, structure-property correlations, and field-effect transistors. Chem Mater 24:1434–1442Google Scholar
  428. 428.
    Chen HJ, Guo YL, Mao ZP, Yu G, Huang JY, Zhao Y, Liu YQ (2013) Naphthalenediimide-based copolymers incorporating vinyl-linkages for high-performance ambipolar field-effect transistors and complementary-like inverters under air. Chem Mater 25:3589–3596Google Scholar
  429. 429.
    Usta H, Newman C, Chen Z, Facchetti A (2012) Dithienocoronenediimide-based copolymers as novel ambipolar semiconductors for organic thin-film transistors. Adv Mater 24:3678–3684Google Scholar
  430. 430.
    Fan J, Yuen JD, Wang MF, Seifter J, Seo JH, Mohebbi AR, Zakhidov D, Heeger AJ, Wudl F (2012) High-performance ambipolar transistors and inverters from an ultralow bandgap polymer. Adv Mater 24:2186–2190Google Scholar
  431. 431.
    Yuen JD, Kumar R, Zakhidov D, Seifter J, Lim B, Heeger AJ, Wudl F (2011) Ambipolarity in benzobisthiadiazole-based donor-acceptor conjugated polymers. Adv Mater 23:3780–3785Google Scholar
  432. 432.
    Hong W, Sun B, Guo C, Yuen J, Li Y, Lu S, Huang C, Facchetti A (2013) Dipyrrolo[2,3-b:2′,3′-e]pyrazine-2,6(1H,5H)-dione based conjugated polymers for ambipolar organic thin-film transistors. Chem Commun 49:484–486Google Scholar
  433. 433.
    Weibin C, Yuen J, Wudl F (2011) Benzodipyrrolidones and their polymers. Macromolecules 44:7869–7873Google Scholar
  434. 434.
    Deng P, Liu L, Ren S, Li H, Zhang Q (2012) N-acylation: an effective method for reducing the LUMO energy levels of conjugated polymers containing five-membered lactam units. Chem Commun 48:6960–6962Google Scholar
  435. 435.
    Hong W, Guo C, Li Y, Zheng Y, Huang C, Lu S, Facchetti A (2012) Synthesis and thin-film transistor performance of benzodipyrrolinone and bithiophene donor-acceptor copolymers. J Mater Chem 22:22282–22289Google Scholar
  436. 436.
    Rumer JW, Levick M, Dai SY, Rossbauer S, Huang ZG, Biniek L, Anthopoulos TD, Durrant JR, Procter DJ, McCulloch I (2013) BPTs: thiophene-flanked benzodipyrrolidone conjugated polymers for ambipolar organic transistors. Chem Commun 49:4465–4467Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute of ChemistryChinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations