Advertisement

Detailed Simulations of Weak-to-Strong Ignition of a H2/O2/Ar Mixture in Shock-Tubes

  • Matthias Ihme
  • Yong Sun
  • Ralf Deiterding

Abstract

The accurate description of chemical-kinetic models is critical for characterizing effects of new fuel compositions on existing propulsion systems and for developing future combustion technologies. Among other facilities, shock tubes remain hereby invaluable in providing detailed information about ignition delay times, extinction limits, and species time-histories for the development and validation of reaction mechanisms.

Keywords

Shock Wave Detonation Wave Shock Tube Ignition Delay Time Boundary Layer Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mark, H.: The interaction of a reflected shock wave with the boundary layer in a shock tube. J. Aeronaut. Sci 24, 304–306 (1957)CrossRefGoogle Scholar
  2. 2.
    Belford, R.L., Strehlow, R.A.: Shock tube techniques in chemical kinetics. Ann. Rev. Phys. Chem. 20, 247–272 (1969)ADSCrossRefGoogle Scholar
  3. 3.
    Davidson, D.F., Hanson, R.K.: Recent advances in shock tube/laser diagnostic methods for improved chemical kinetics measurements. Shock Waves 19, 271–283 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    Michael, J.V., Sutherland, J.W.: The thermodynamic state of the hot gas behind reflected shock-waves – Implication to chemical-kinetics. Int. J. Chem. Kinet 18, 409–436 (1986)CrossRefGoogle Scholar
  5. 5.
    Lifshitz, A., Bar-Nun, A., de Boer, P.C.T., Resler Jr., E.L.: Boundary layer effects on chemical kinetics studies in a shock tube. J. Chem. Phys. 53, 3050–3055 (1970)Google Scholar
  6. 6.
    Khandelwal, S.C., Skinner, G.B.: Shock tube studies of hydrocarbon oxidation. In: Lifshitz, A. (ed.) Shock Waves in Chemistry, pp. 1–57. Marcel Dekker, Inc. (1981)Google Scholar
  7. 7.
    Petersen, E.L., Hanson, R.K.: Nonideal effects behind reflected shock waves in a high-pressure shock tube. Shock Waves 10, 405–420 (2001)ADSCrossRefGoogle Scholar
  8. 8.
    Lifshitz, A.: Shock Waves in Chemistry. Marcel Dekker, Inc. (1981)Google Scholar
  9. 9.
    Deiterding, R.: AMROC - Blockstructured Adaptive Mesh Refinement in Object-oriented C++ (2008), http://amroc.sourceforge.net
  10. 10.
    Berger, M.J., Colella, P.: Local adaptive mesh refinement for shock hydrodynamics. J. Comp. Phys. 82, 64–84 (1989)ADSCrossRefGoogle Scholar
  11. 11.
    Ziegler, J.L., Deiterding, R., Shepherd, J.E., Pullin, D.I.: An adaptive high-order hybrid scheme for compressive, viscous flows with detailed chemistry. J. Comp. Phys. 230(20), 7598–7630 (2011)MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    Strehlow, R.A., Cohen, A.: Limitations of the reflected shock technique for studying fast chemical reactions and its application to the observation of relaxation in nitrogen and oxygen. J. Chem. Phys. 30, 257–265 (1959)ADSCrossRefGoogle Scholar
  13. 13.
    Meyer, J.W., Oppenheim, A.K.: On the shock-induced ignition of explosive gases. Proc. Combust. Inst. 13, 1153–1164 (1971)CrossRefGoogle Scholar
  14. 14.
    Oppenheim, A.K.: Dynamic features of combustion. Phil. Trans. Roy. Soc. London 315, 471–508 (1985)ADSCrossRefGoogle Scholar
  15. 15.
    Blumenthal, R., Fieweger, K., Komp, K.H., Adomeit, G., Gelfand, B.E.: Self-ignition of H2-air mixtures at high pressure and low temperature. In: Proc. Int. Symp. Shock Waves, vol. 20, pp. 935–940 (1995)Google Scholar
  16. 16.
    Blumenthal, R., Fieweger, K., Komp, K.H., Adomeit, G.: Gas dynamic features of self ignition of non diluted fuel/air mixtures at high pressure. Combust. Sci. Tech. 113, 137–166 (1996)CrossRefGoogle Scholar
  17. 17.
    Pang, G.A., Davidson, D.F., Hanson, R.K.: Experimental study and modeling of shock tube ignition delay times for hydrogen/oxygen/argon mixtures at low temperatures. Proc. Combust. Inst. 32, 181–188 (2009)CrossRefGoogle Scholar
  18. 18.
    Burke, M.P., Chaos, M., Ju, Y., Dryer, F.L., Klippenstein, S.J.: Comprehensive H2/O2 kinetic model for high-pressure combustion. Int. J. Chem. Kinet. 44(7), 444–474 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Matthias Ihme
    • 1
  • Yong Sun
    • 2
  • Ralf Deiterding
    • 3
  1. 1.Department of Mechanical EngineeringStanford UniversityStanfordUSA
  2. 2.Department of Aerospace EngineeringUniversity of MichiganAnn ArborUSA
  3. 3.Oak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations