FASA: Fast, Accurate, and Size-Aware Salient Object Detection

  • Gökhan YildirimEmail author
  • Sabine Süsstrunk
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9005)


Fast and accurate salient-object detectors are important for various image processing and computer vision applications, such as adaptive compression and object segmentation. It is also desirable to have a detector that is aware of the position and the size of the salient objects. In this paper, we propose a salient-object detection method that is fast, accurate, and size-aware. For efficient computation, we quantize the image colors and estimate the spatial positions and sizes of the quantized colors. We then feed these values into a statistical model to obtain a probability of saliency. In order to estimate the final saliency, this probability is combined with a global color contrast measure. We test our method on two public datasets and show that our method significantly outperforms the fast state-of-the-art methods. In addition, it has comparable performance and is an order of magnitude faster than the accurate state-of-the-art methods. We exhibit the potential of our algorithm by processing a high-definition video in real time.


Color Histogram Salient Object Salient Region Saliency Detection Visual Saliency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Swiss National Science Foundation under grant number 200021-143406/1.


  1. 1.
    Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. PAMI 20, 1254–1259 (1998)CrossRefGoogle Scholar
  2. 2.
    Anderson, J.R.: Cognitive Psychology and Its Implications, 5th edn. Worth, New York (2000)Google Scholar
  3. 3.
    Itti, L.: Automatic foveation for video compression using a neurobiological model of visual attention. IEEE Trans. Image Process. 13, 1304–1318 (2004)CrossRefGoogle Scholar
  4. 4.
    Achanta, R., Süsstrunk, S.: Saliency detection for content-aware image resizing. In: Proceedings of IEEE ICIP, pp. 1001–1004 (2009)Google Scholar
  5. 5.
    Xiang, Y., Kankanhalli, M.S.: Video retargeting for aesthetic enhancement. In: Proceedings of ACM Multimedia, pp. 919–922 (2010)Google Scholar
  6. 6.
    Wolf, L., Guttmann, M., Cohen-Or, D.: Non-homogeneous content-driven video-retargeting. In: Proceedings of IEEE ICCV, pp.1–6 (2007)Google Scholar
  7. 7.
    Oliva, A., Torralba, A., Castelhano, M., Henderson, J.: Top-down control of visual attention in object detection. In: Proceedings of IEEE ICIP, vol. 1, pp. 253–256 (2003)Google Scholar
  8. 8.
    Alpert, S., Galun, M., Basri, R., Brandt, A.: Image segmentation by probabilistic bottom-up aggregation and cue integration. In: Proceedings of IEEE CVPR, pp. 1–8 (2007)Google Scholar
  9. 9.
    Achanta, R., Hemami, S., Estrada, F., Süsstrunk, S.: Frequency-tuned salient region detection. In: Proceedings of IEEE CVPR, pp. 1597–1604 (2009)Google Scholar
  10. 10.
    Zhai, Y., Shah, M.: Visual attention detection in video sequences using spatiotemporal cues. In: Proceedings of ACM Multimedia, pp. 815–824 (2006)Google Scholar
  11. 11.
    Cheng, M., Zhang, G., Mitra, N.J., Huang, X., Hu, S.: Global contrast based salient region detection. In: Proceedings of IEEE CVPR, pp. 409–416 (2011)Google Scholar
  12. 12.
    Perazzi, F., Krahenbuhl, P., Pritch, Y., Hornung, A.: Saliency filters: contrast based filtering for salient region detection. In: Proceedings of IEEE CVPR, pp. 733–740 (2012)Google Scholar
  13. 13.
    Cheng, M.M., Warrell, J., Lin, W.Y., Zheng, S., Vineet, V., Crook, N.: Efficient salient region detection with soft image abstraction. In: IEEE ICCV (2013)Google Scholar
  14. 14.
    Yang, C., Zhang, L., Lu, H., Ruan, X., Yang, M.: Saliency detection via graph-based manifold ranking. In: Proceedings of IEEE CVPR, pp. 3166–3173 (2013)Google Scholar
  15. 15.
    Yang, Q., Tan, K., Ahuja, N.: Real-time O(1) bilateral filtering. In: Proceedings of IEEE CVPR, pp. 557–564 (2009)Google Scholar
  16. 16.
    Liu, T., Yuan, Z., Sun, J., Wang, J., Zheng, N., Tang, X., Shum, H.: Learning to detect a salient object. IEEE Trans. PAMI 33, 353–367 (2011)CrossRefGoogle Scholar
  17. 17.
    Borji, A., Sihite, D.N., Itti, L.: Salient object detection: a benchmark. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 414–429. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  18. 18.
    Alexe, B., Deselaers, T., Ferrari, V.: Measuring the objectness of image windows. IEEE Trans. PAMI 34, 2189–2202 (2012)CrossRefGoogle Scholar
  19. 19.
    Cheng, M.M., Zhang, Z., Lin, W.Y., Torr, P.H.S.: BING: binarized normed gradients for objectness estimation at 300fps. In: Proceedings of IEEE CVPR (2014)Google Scholar
  20. 20.
    Zia, K., Balch, T., Dellaert, F.: MCMC-based particle filtering for tracking a variable number of interacting targets. IEEE Trans. PAMI 27, 1805–1819 (2005)CrossRefGoogle Scholar
  21. 21.
    Stalder, S., Grabner, H., Van Gool, L.: Cascaded confidence filtering for improved tracking-by-detection. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 369–382. Springer, Heidelberg (2010) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.School of Computer and Communication SciencesÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations