Advertisement

Stereo Fusion Using a Refractive Medium on a Binocular Base

  • Seung-Hwan Baek
  • Min H. KimEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9004)

Abstract

The performance of depth reconstruction in binocular stereo relies on how adequate the predefined baseline for a target scene is. Wide-baseline stereo is capable of discriminating depth better than the narrow one, but it often suffers from spatial artifacts. Narrow-baseline stereo can provide a more elaborate depth map with less artifacts, while its depth resolution tends to be biased or coarse due to the short disparity. In this paper, we propose a novel optical design of heterogeneous stereo fusion on a binocular imaging system with a refractive medium, where the binocular stereo part operates as wide-baseline stereo; the refractive stereo module works as narrow-baseline stereo. We then introduce a stereo fusion workflow that combines the refractive and binocular stereo algorithms to estimate fine depth information through this fusion design. The quantitative and qualitative results validate the performance of our stereo fusion system in measuring depth, compared with homogeneous stereo approaches.

Keywords

Stereo Pair Transparent Medium Epipolar Line Target Scene Binocular Stereo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

Min H. Kim gratefully acknowledges Korea NRF grants (2013R1A1A1010165 and 2013M3A6A6073718) and additional support by Microsoft Research Asia and an ICT R&D program of MSIP/IITP (10041313).

References

  1. 1.
    Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. (IJCV) 47, 7–42 (2002)CrossRefzbMATHGoogle Scholar
  2. 2.
    Rhemann, C., Hosni, A., Bleyer, M., Rother, C., Gelautz, M.: Fast cost-volume filtering for visual correspondence and beyond. In: Proceedings of the Computer Vision and Pattern Recognition (CVPR), pp. 3017–3024. IEEE (2011)Google Scholar
  3. 3.
    Okutomi, M., Kanade, T.: A multiple-baseline stereo. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 15, 353–363 (1993)CrossRefGoogle Scholar
  4. 4.
    Zilly, F., Riechert, C., Mller, M., Eisert, P., Sikora, T., Kauff, P.: Real-time generation of multi-view video plus depth content using mixed narrow and wide baseline. J. Vis. Commun. Image Represent. 25, 632–648 (2013)CrossRefGoogle Scholar
  5. 5.
    Gao, C., Ahuja, N.: Single camera stereo using planar parallel plate. In: Proceedings of the International Conference on Pattern Recognition (ICPR), vol. 4, pp. 108–111 (2004)Google Scholar
  6. 6.
    Gao, C., Ahuja, N.: A refractive camera for acquiring stereo and super-resolution images. In: Proceedings of the Computer Vision and Pattern Recognition (CVPR), pp. 2316–2323 (2006)Google Scholar
  7. 7.
    Chen, Z., Wong, K.Y.K., Matsushita, Y., Zhu, X.: Depth from refraction using a transparent medium with unknown pose and refractive index. Int. J. Comput. Vis. (ICJV) 102, 1–15 (2013)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Gallup, D., Frahm, J.M., Mordohai, P., Pollefeys, M.: Variable baseline/resolution stereo. In: Proceedings of the Computer Vision and Pattern Recognition (CVPR), pp. 1–8 (2008)Google Scholar
  9. 9.
    Nakabo, Y., Mukai, T., Hattori, Y., Takeuchi, Y., Ohnishi, N.: Variable baseline stereo tracking vision system using high-speed linear slider. In: Proceedings of the International Conference on Robotics and Automation (ICRA), pp. 1567–1572 (2005)Google Scholar
  10. 10.
    Nishimoto, Y., Shirai, Y.: A feature-based stereo model using small disparities. In: Proceedings of the Computer Vision and Pattern Recognition (CVPR), pp. 192–196 (1987)Google Scholar
  11. 11.
    Lee, D., Kweon, I.: A novel stereo camera system by a biprism. IEEE Trans. Robot. Autom. 16, 528–541 (2000)CrossRefGoogle Scholar
  12. 12.
    Shimizu, M., Okutomi, M.: Reflection stereo-novel monocular stereo using a transparent plate. In: Proceedings of the Canadian Conference on Computer and Robot Vision (CRV), pp. 14–14. IEEE (2006)Google Scholar
  13. 13.
    Shimizu, M., Okutomi, M.: Monocular range estimation through a double-sided half-mirror plate. In: Proceedings of the Canadian Conference on Computer and Robot Vision (CRV), pp. 347–354. IEEE (2007)Google Scholar
  14. 14.
    Chen, Z., Wong, K., Matsushita, Y., Zhu, X., Liu, M.: Self-calibrating depth from refraction. In: Proceedings of the International Conference on Computer Vision (ICCV), pp. 635–642 (2011)Google Scholar
  15. 15.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. (IJCV) 60, 91–110 (2004)CrossRefGoogle Scholar
  16. 16.
    Hecht, E.: Optics. Addison-Wesley, Reading (1987)Google Scholar
  17. 17.
    Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 22, 1330–1334 (2000)CrossRefGoogle Scholar
  18. 18.
    Kim, M.H., Kautz, J.: Characterization for high dynamic range imaging. Comput. Graph. Forum (Proc. EUROGRAPHICS 2008) 27, 691–697 (2008)CrossRefGoogle Scholar
  19. 19.
    Kim, C., Zimmer, H., Pritch, Y., Sorkine-Hornung, A., Gross, M.: Scene reconstruction from high spatio-angular resolution light fields. ACM Trans. Graph. (TOG) 32(73), 1–12 (2013)Google Scholar
  20. 20.
    Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. Wiley, New York (1973)zbMATHGoogle Scholar
  21. 21.
    Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 24, 603–619 (2002)CrossRefGoogle Scholar
  22. 22.
    Yoon, K.J., Kweon, I.S.: Adaptive support-weight approach for correspondence search. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 28, 650–656 (2006)CrossRefGoogle Scholar
  23. 23.
    Ma, Z., He, K., Wei, Y., Sun, J., Wu, E.: Constant time weighted median filtering for stereo matching and beyond. In: Proceedings of the International Conference on Computer Vision (ICCV), pp. 1–8 (2013)Google Scholar
  24. 24.
    He, K., Sun, J., Tang, X.: Guided image filtering. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 1–14. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  25. 25.
    Barnard, S.T.: Stochastic stereo matching over scale. Int. J. Comput. Vis. (IJCV) 3, 17–32 (1989)CrossRefGoogle Scholar
  26. 26.
    Chen, J.S., Medioni, G.: Parallel multiscale stereo matching using adaptive smoothing. In: Faugeras, O. (ed.) ECCV 1990. LNCS, vol. 427, pp. 99–103. Springer, Heidelberg (1990) CrossRefGoogle Scholar
  27. 27.
    Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 23, 1222–1239 (2001)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.KAISTDaejeonKorea

Personalised recommendations