On the Performance of Pose-Based RGB-D Visual Navigation Systems

  • Dominik Belter
  • Michał Nowicki
  • Piotr Skrzypczyński
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9004)


This paper presents a thorough performance analysis of several variants of the feature-based visual navigation system that uses RGB-D data to estimate in real-time the trajectory of a freely moving sensor. The evaluation focuses on the advantages and problems that are associated with choosing a particular structure of the sensor-tracking front-end, employing particular feature detectors/descriptors, and optimizing the resulting trajectory treated as a graph of sensor poses. Moreover, a novel yet simple graph pruning algorithm is introduced, which enables to remove spurious edges from the pose-graph. The experimental evaluation is performed on two publicly available RGB-D data sets to ensure that our results are scientifically verifiable.


Loop Closure Motion Estimation Window Optimization Visual Odometry Graph Optimization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was financed by the Polish National Science Centre grant funded according to the decision DEC-2013/09/B/ST7/01583.


  1. 1.
    Agarwal, P., Grisetti, G., Tipaldi, G., Spinello, L., Burgard, W., Stachniss, C.: Experimental analysis of dynamic covariance scaling for robust map optimization under bad initial estimates. In: Proceedings of the IEEE International Conference on Robotics and Automation, Hong Kong, pp. 3626–3631 (2014)Google Scholar
  2. 2.
    Bachrach, A., Prentice, S., He, R., Henry, P., Huang, A., Krainin, M., Maturana, D., Fox, D., Roy, N.: Estimation, planning, and mapping for autonomous flight using an RGB-D camera in GPS-denied environments. Int. J. Robot. Res. 31(11), 1320–1343 (2012)CrossRefGoogle Scholar
  3. 3.
    Bailey, T., Durrant-Whyte, H.: Simultaneous localization and mapping: part II. IEEE Robot. Autom. Mag. 13(3), 108–117 (2006)CrossRefGoogle Scholar
  4. 4.
    Baker, S., Matthews, I.: Lucas-Kanade 20 years on: a unifying framework. Int. J. Comput. Vis. 56(3), 221–255 (2004)CrossRefGoogle Scholar
  5. 5.
    Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)CrossRefGoogle Scholar
  6. 6.
    Bouguet, J.Y.: Pyramidal implementation of the Lucas-Kanade feature tracker, description of the algorithm (2000)Google Scholar
  7. 7.
    Calonder, M., Lepetit, V., Ozuysal, M., Trzcinski, T., Strecha, C., Fua, P.: BRIEF: computing a local binary descriptor very fast. IEEE Trans. Pattern Anal. Mach. Intell. 34(7), 1281–1298 (2012)CrossRefGoogle Scholar
  8. 8.
    Choi, S., Kim, T., Yu, W.: Performance evaluation of RANSAC family. In: Proceedings of British Machine Vision Conference, London (2009)Google Scholar
  9. 9.
    Durrant-Whyte, H., Bailey, T.: Simultaneous localization and mapping: part I. IEEE Robot. Autom. Mag. 13(2), 99–110 (2006)CrossRefGoogle Scholar
  10. 10.
    Eggert, D.W., Lorusso, A., Fisher, R.B.: Estimating 3-D rigid body transformations: a comparison of four major algorithms. Mach. Vis. Appl. 9(5–6), 272–290 (1997)CrossRefGoogle Scholar
  11. 11.
    Engels, C., Stewenius, H., Nistér, D.: Bundle adjustment rules. In: Photogrammetric Computer Vision, September 2006Google Scholar
  12. 12.
    Endres, F., Hess, J., Engelhard, N., Sturm, J., Cremers, D., Burgard, W.: An evaluation of the RGB-D SLAM system. In: Proceedings of the IEEE International Conference on Robotics and Automation, St. Paul, pp. 1691–1696 (2012)Google Scholar
  13. 13.
    Endres, F., Hess, J., Sturm, J., Cremers, D., Burgard, W.: 3-D Mapping with an RGB-D camera. IEEE Trans. Robot. 30(1), 177–187 (2014)CrossRefGoogle Scholar
  14. 14.
    Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the International Conference on Knowledge Discovery and Data Mining, pp. 226–231 (1996)Google Scholar
  15. 15.
    Fischler, M., Bolles, R.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Fraundorfer, F., Scaramuzza, D.: Visual odometry: part II: matching, robustness, optimization, and applications. IEEE Robot. Autom. Mag. 19(2), 78–90 (2012)CrossRefGoogle Scholar
  17. 17.
    Handa, A., Whelan, T., McDonald, J., Davison, A.: A benchmark for RGB-D visual odometry, 3D reconstruction and SLAM. In: IEEE International Conference on Robotics and Automation, Hong Kong (2014)Google Scholar
  18. 18.
    Henry, P., Krainin, M., Herbst, E., Ren, X., Fox, D.: RGB-D mapping: using kinect-style depth cameras for dense 3D modeling of indoor environments. Int. J. Robot. Res. 31(5), 647–663 (2012)CrossRefGoogle Scholar
  19. 19.
    Kerl, C., Sturm, J., Cremers, D.: Robust odometry estimation for RGB-D cameras. In: Proceedings of the IEEE International Conference on Robotics and Automation, Karlsruhe, pp. 3748–3754 (2013)Google Scholar
  20. 20.
    Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K., Burgard, W.: g2o: a general framework for graph optimization. In: Proceedings of the IEEE International Conference on Robotics and Automation, Shanghai, pp. 3607–3613 (2011)Google Scholar
  21. 21.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)CrossRefGoogle Scholar
  22. 22.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005)CrossRefGoogle Scholar
  23. 23.
    Mouragnon, E., Lhuillier, M., Dhome, M., Dekeyser, F., Sayd, P.: Generic and real-time structure from motion using local bundle adjustment. Image Vis. Comput. 27, 1178–1193 (2009)CrossRefGoogle Scholar
  24. 24.
    Nowicki, M., Skrzypczyński, P.: Combining photometric and depth data for lightweight and robust visual odometry. In: European Conference on Mobile Robots, pp. 125–130 (2013)Google Scholar
  25. 25.
    Park, J.-H., Shin, Y.-D., Bae, J.-H., Baeg, M.-H.: Spatial uncertainty model for visual features using a Kinect sensor. Sensors 12, 8640–8662 (2012)CrossRefGoogle Scholar
  26. 26.
    Raguram, R., Chum, O., Pollefeys, M., Matas, J., Frahm, J.: USAC: a universal framework for random sample consenus. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 2022–2038 (2013)CrossRefGoogle Scholar
  27. 27.
    Rosten, E., Drummond, T.W.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  28. 28.
    Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: IEEE International Conference on Computer Vision (ICCV), pp. 2564–2571 (2011)Google Scholar
  29. 29.
    Scaramuzza, D., Fraundorfer, F.: Visual odometry: part I the first 30 years and fundamentals. IEEE Robot. Autom. Mag. 18(4), 80–92 (2011)CrossRefGoogle Scholar
  30. 30.
    Schmidt, A., Kraft, M., Fularz, M., Domagala, Z.: Comparative assessment of point feature detectors and descriptors in the context of robot navigation. J. Autom. Mob. Robot. Intell. Syst. 7(1), 11–20 (2013)Google Scholar
  31. 31.
    Shi, J., Tomasi, C.: Good features to track. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 1994), pp. 593–600 (1994)Google Scholar
  32. 32.
    Skrzypczyński, P.: Simultaneous localization and mapping: a feature-based probabilistic approach. Int. J. Appl. Math. Comput. Sci. 19(4), 575–588 (2009)zbMATHGoogle Scholar
  33. 33.
    Steinbrücker, F., Sturm, J., Cremers, D.: Real-time visual odometry from dense RGB-D images, Workshop on Live Dense Reconstruction with Moving Cameras. In: IEEE International Conference on Computer Vision (ICCV), Barcelona (2011)Google Scholar
  34. 34.
    Strasdat, H.: Local accuracy and global consistency for efficient visual SLAM. Ph.D. dissertation, Imperial College, London (2012)Google Scholar
  35. 35.
    Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation of RGB-D SLAM systems. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, pp. 573–580 (2012)Google Scholar
  36. 36.
    Tuytelaars, T., Mikolajczyk, K.: Local invariant feature detectors: a survey. Found. Trends Comput. Graph. Vis. 3(3), 177–280 (2008)CrossRefGoogle Scholar
  37. 37.
    Umeyama, S.: Least-squares estimation of transformation parameters between two point patterns. IEEE Trans. Pattern Anal. Mach. Intell. 13(4), 376–380 (1991)CrossRefGoogle Scholar
  38. 38.
    Whelan, T., Johannsson, H., Kaess, M., Leonard, J. J., McDonald, J. B.: Robust real-time visual odometry for dense RGB-D mapping. In: Proceedings of the IEEE International Conference on Robotics and Automation, Karlsruhe, pp. 5704–5711 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Dominik Belter
    • 1
  • Michał Nowicki
    • 1
  • Piotr Skrzypczyński
    • 1
  1. 1.Institute of Control and Information EngineeringPoznań University of TechnologyPoznańPoland

Personalised recommendations