Advertisement

Multi-view Geometry Compression

  • Siyu Zhu
  • Tian FangEmail author
  • Runze Zhang
  • Long Quan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9004)

Abstract

For large-scale and highly redundant photo collections, eliminating statistical redundancy in multi-view geometry is of great importance to efficient 3D reconstruction. Our approach takes the full set of images with initial calibration and recovered sparse 3D points as inputs, and obtains a subset of views that preserve the final reconstruction accuracy and completeness well. We first construct an image quality graph, in which each vertex represents an input image, and the problem is then to determine a connected sub-graph guaranteeing a consistent reconstruction and maximizing the accuracy and completeness of the final reconstruction. Unlike previous works, which only address the problem of efficient structure from motion (SfM), our technique is highly applicable to the whole reconstruction pipeline, and solves the problems of efficient bundle adjustment, multi-view stereo (MVS), and subsequent variational refinement.

Keywords

Image Pair Bundle Adjustment Reconstruction Accuracy Structure From Motion Camera Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

We really appreciate the support of RGC-GRF 618711, RGC/NSFC N_HKUST607/11, ITC-PSKL12EG02, and National Basic Research Program of China (2012CB316300).

References

  1. 1.
    Heyden, A., Pollefeys, M.: Tutorial on multiple view geometry. In: Conjunction with ICPR (2000)Google Scholar
  2. 2.
    Agarwal, S., Snavely, N., Simon, I., Seitz, S.M., Szeliski, R.: Building rome in a day. In: ICCV (2009)Google Scholar
  3. 3.
    Nister, D., Stewenius, H.: Scalable recognition with a vocabulary tree. In: CVPR (2006)Google Scholar
  4. 4.
    Frahm, J.-M., Fite-Georgel, P., Gallup, D., Johnson, T., Raguram, R., Wu, C., Jen, Y.-H., Dunn, E., Clipp, B., Lazebnik, S., Pollefeys, M.: Building rome on a cloudless day. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 368–381. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  5. 5.
    Wu, C.: Towards linear-time incremental structure from motion. In: 3DTV (2013)Google Scholar
  6. 6.
    Snavely, N., Seitz, S.M., Szeliski, R.: Skeletal sets for efficient structure from motion. In: CVPR (2008)Google Scholar
  7. 7.
    Li, X., Wu, C., Zach, C., Lazebnik, S., Frahm, J.-M.: Modeling and recognition of landmark image collections using iconic scene graphs. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 427–440. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  8. 8.
    Agarwal, S., Snavely, N., Seitz, S.M., Szeliski, R.: Bundle adjustment in the large. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part II. LNCS, vol. 6312, pp. 29–42. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  9. 9.
    Steedly, D., Essa, I., Dellaert, F.: Spectral partitioning for structure from motion. In: ICCV (2003)Google Scholar
  10. 10.
    Ni, K., Steedly, D., Dellaert, F.: Out-of-core bundle adjustment for large-scale 3D reconstruction. In: ICCV (2007)Google Scholar
  11. 11.
    Mouragnon, E., Lhuillier, M., Dhome, M., Dekeyser, F., Sayd, P.: Real time localization and 3D reconstruction. In: CVPR (2006)Google Scholar
  12. 12.
    Eudes, A., Lhuillier, M.: Error propagations for local bundle adjustment. In: CVPR (2009)Google Scholar
  13. 13.
    Farenzena, M., Fusiello, A., Gherardi, R.: Structure-and-motion pipeline on a hierarchical cluster tree. In: ICCV Workshop on 3D Digital Imaging and Modeling (2009)Google Scholar
  14. 14.
    Gherardi, R., Farenzena, M., Fusiello, A.: Improving the efficiency of hierarchical structure-and-motion. In: CVPR (2010)Google Scholar
  15. 15.
    Fang, T., Quan, L.: Resampling structure from motion. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part II. LNCS, vol. 6312, pp. 1–14. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  16. 16.
    Fitzgibbon, A.W., Zisserman, A.: Automatic camera recovery for closed or open image sequences. In: Burkhardt, H.-J., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1406, pp. 311–326. Springer, Heidelberg (1998) Google Scholar
  17. 17.
    Nistér, D.: Reconstruction from uncalibrated sequences with a hierarchy of trifocal tensors. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1842, pp. 649–663. Springer, Heidelberg (2000) CrossRefGoogle Scholar
  18. 18.
    Repko, J., Pollefeys, M.: 3D models from extended uncalibrated video sequences. In: Proceeding 3DIM (2005)Google Scholar
  19. 19.
    Booij, O., Zivkovic, Z., Krose, B.: Sparse appearance based modeling for robot localization. In: IROS (2006)Google Scholar
  20. 20.
    Zhu, S., Fang, T., Xiao, J., Quan, L.: Local readjustment for high-resolution 3D reconstruction (2014)Google Scholar
  21. 21.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2000) zbMATHGoogle Scholar
  22. 22.
    Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: exploring photo collections in 3D. In: SIGGRAPH (2006)Google Scholar
  23. 23.
    Lhuillier, M., Quan, L.: A quasi-dense approach to surface reconstruction from uncalibrated images. PAMI 27, 418–433 (2005)CrossRefGoogle Scholar
  24. 24.
    Goesele, M., Snavely, N., Curless, B., Hoppe, H., Seitz, S.M.: Multi-view stereo for community photo collections. In: ICCV (2007)Google Scholar
  25. 25.
    Furukawa, Y., Curless, B., Seitz, S.M., Szeliski, R.: Towards internet-scale multi-view stereo. In: CVPR (2010)Google Scholar
  26. 26.
    Agarwal, S., Mierle, K., Others: Ceres solver. https://code.google.com/p/ceres-solver/
  27. 27.
    Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Symposium Geometry Proceeding (2006)Google Scholar
  28. 28.
    Delaunoy, A., Prados, E., Gargallo, P., Pons, J.P., Sturm, P.F.: Minimizing the multi-view stereo reprojection error for triangular surface meshes. In: BMVC (2008)Google Scholar
  29. 29.
    Strecha, C., Hansen, W.V., Gool, L.V., Fua, P., Thoennessen, U.: On benchmarking camera calibration and multi-view stereo for high resolution imagery. In: CVPR (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.The Hong Kong University of Science and TechnologyHong KongChina

Personalised recommendations