AGILE 2015 pp 145-163 | Cite as

Towards Real-Time Processing of Massive Spatio-temporally Distributed Sensor Data: A Sequential Strategy Based on Kriging

  • Peter Lorkowski
  • Thomas Brinkhoff
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)


Sensor data streams are the basis for monitoring systems which infer complex information like the excess of a pollution threshold for a region. Since sensor observations tend to be arbitrarily distributed in space and time, an appropriate interpolation method is necessary. Within geostatistics, kriging represents a powerful and established method, but is computation intensive for large datasets. We propose a method to exploit the advantages of kriging while limiting its computational complexity. Large datasets are divided into sub-models, computed separately and merged again in accordance with their kriging variances. We apply the approach to a synthetic model scenario in order to investigate its quality and performance.


Continuous phenomena Sensor data streams Spatio-temporal interpolation Kriging Deviation map 


  1. Appice, A., Ciampi, A., Fumarola, F., & Malerba, D. (2014). Data mining techniques in sensor networks: Summarization, interpolation and surveillance. London: Springer.CrossRefGoogle Scholar
  2. Armstrong, M. (1998). Basic linear geostatistics. Berlin: Springer.CrossRefGoogle Scholar
  3. Barillec, R., Ingram, B., Cornford, D., & Csató, L. (2011). Projected Sequential Gaussian Processes: a C++ tool for interpolation of large data sets with heterogeneous noise. Computers and Geosciences, 37 (2011), 295–309.Google Scholar
  4. Botts, M., Percivall, G., Reed, C., & Davidson, J. (2007). OGC® sensor web enablement: Overview and high level architecture. Open geospatial consortium. Online document:
  5. Cressie, N. A. C. (1985). Fitting variogram models by weighted least squares. Mathematical Geology, 17(5), 1985.Google Scholar
  6. Cressie, N. A. C. (1990). The origins of kriging. Mathematical Geology, 22(3), 1990.CrossRefGoogle Scholar
  7. Cressie, N. A. C. (1993). Statistics for spatial data. New York: Wiley.CrossRefGoogle Scholar
  8. Cressie, N. A. C., & Wikle, C. K. (2011). Statistics for spatio-temporal data. Hoboken: Wiley.Google Scholar
  9. Jaynes, E. T. (2003). Probability theory. Cambridge: Cambridge University Press.Google Scholar
  10. Katzfuss, M., & Cressie, N. A. C. (2011). Tutorial on fixed rank kriging (FRK) of CO 2 data. Technical Report No. 858. Department of Statistics, The Ohio State University.Google Scholar
  11. Osborne, M. A., Roberts, S. J., Rogers, A., & Jennings, I. R. (2012). Real-time information processing of environmental sensor network data using bayesian gaussian processes. ACM Transactions on Sensor Networks, 9(1), 1.Google Scholar
  12. Romanowicz, R., Young, P., Brown, P., & Diggle, P. (2005). A recursive estimation approach to the spatio-temporal analysis and modeling of air quality data. Amsterdam: Elsevier.Google Scholar
  13. Wackernagel, H. (2003). Multivariate geostatistics: An introduction with applications. Berlin: Springer.CrossRefGoogle Scholar
  14. Walkowski, A. C. (2010). Modellbasierte Optimierung mobiler Geosensornetzwerke für raumzeitvariante Phänomene. Heidelberg: AKA Verlag.Google Scholar
  15. Webster, R., & Oliver, M. A. (2007). Geostatistics for environmental scientists (statistics in practice). West Sussex: Wiley.CrossRefGoogle Scholar
  16. Whittier, J. C., Nittel, S., Plummer, M. A., & Liang, Q. (2013). Towards window stream queries over continuous phenomena. In: 4th ACM SIGSPATIAL International Workshop on GeoStreaming (IWGS), Orlando.Google Scholar
  17. Wikle, C. K. (2003). Hierarchical models in environmental science. International Statistical Review, 71(2), 181–199.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute for Applied Photogrammetry and Geoinformatics (IAPG)Jade University of Applied Sciences Wilhelmshaven/Oldenburg/ElsflethOldenburgGermany

Personalised recommendations