AGILE 2015 pp 91-103

Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)

Privacy Preserving Centralized Counting of Moving Objects

Chapter

Abstract

Proliferation of pervasive devices capturing sensible data streams, e.g. mobility records, raise concerns on individual privacy. Even if the data is aggregated at a central server, location data may identify a particular person. Thus, the transmitted data must be guarded against re-identification and an un-trusted server. This paper overcomes limitations of previous works and provides a privacy preserving aggregation framework for distributed data streams. Individual location data is obfuscated to the server and just aggregates of k persons can be processed. This is ensured by use of Pailler’s homomorphic encryption framework and Shamir’s secret sharing procedure. In result we obtain anonymous unification of the data streams in an un-trusted environment.

Keywords

Mobility analysis Distributed monitoring Stream data 

References

  1. Abul, O., Bonchi, F., & Nanni, M. (2008). Never walk alone: Uncertainty for anonymity in moving objects databases. In Proceedings of the 2008 IEEE 24th International Conference on Data Engineering (ICDE’08) (pp. 376–385). Washington, D.C., USA: IEEE Computer Society.Google Scholar
  2. Andrienko, N., Andrienko, G., Stange, H., Liebig, T., & Hecker, D. (2012). Visual analytics for understanding spatial situations from episodic movement data. KI—Künstliche Intelligenz (pp. 241–251).Google Scholar
  3. Andrienko, G., Gkoulalas-Divanis, A., Gruteser, M., Kopp, C., Liebig, T., & Rechert, K. (2013). Report from dagstuhl: The liberation of mobile location data and its implications for privacy research. ACM SIGMOBILE Mobile Computing and Communications Review, 17(2), 7–18.CrossRefGoogle Scholar
  4. Bockermann, C., & Blom, H. (2012). The streams framework (p. 12). TU Dortmund University, Technical Report 5.Google Scholar
  5. Bockermann, C., & Blom, H. (2012). Processing data streams with the rapidminer streams-plugin. In Proceedings of the 3rd RapidMiner Community Meeting and Conference.Google Scholar
  6. Boutsis, I., & Kalogeraki, V. (2013). Privacy preservation for participatory sensing data. In 2014 IEEE International Conference on Pervasive Computing and Communications (PerCom) (pp. 103–113).Google Scholar
  7. Clifton, C., et al. (2004). Privacy-preserving data integration and sharing. In DMKD (pp. 19–26).Google Scholar
  8. Damgård, I., & Jurik, M. (2001). A generalisation, a simplification and some applications of paillier’s probabilistic public-key system. In Proceedings of the 4th International Workshop on Practice and Theory in Public Key Cryptography: Public Key Cryptography (PKC’01) (pp. 119–136). London, UK: Springer.Google Scholar
  9. Duan, Y. (2009). Privacy without noise. In Proceedings of the 18th ACM Conference on Information and Knowledge Management (CIKM’09) (pp. 1517–1520). New York, USA: ACM.Google Scholar
  10. Dwork, C., McSherry, F., Nissim, K., & Smith, A. (2006). Calibrating noise to sensitivity in private data analysis. In Proceedings of the Third Conference on Theory of Cryptography (TCC’06) (pp. 265–284). Berlin, Heidelberg: Springer.Google Scholar
  11. Florescu, S. C., Mock, M., Körner, C., & May, M. (2012). Efficient mobility pattern detection on mobile devices. In Proceedings of the ECAI’12 Workshop on Ubiquitous Data Mining (pp. 23–27).Google Scholar
  12. Giannotti, F., & Pedreschi, D. (2008). Mobility, data mining and privacy—geographic knowledge discovery. Berlin: Springer.Google Scholar
  13. Hoh, B., Iwuchukwu, T., Jacobson, Q., Work, D. B., Bayen, A. M., Herring, R., et al. (2012). Enhancing privacy and accuracy in probe vehicle-based traffic monitoring via virtual trip lines. IEEE Transactions on Mobile Computing, 11(5), 849–864.CrossRefGoogle Scholar
  14. Johnson, D. S. (1984). The NP-completeness column: An ongoing guide. Journal of Algorithms, 5(3), 433–447.CrossRefGoogle Scholar
  15. Kopp, C., Mock, M., & May, M. (2012). Privacy-preserving distributed monitoring of visit quantities. In Proceedings of the 20th International Conference on Advances in Geographic Information Systems (SIGSPATIAL’12) (pp. 438–441). New York, USA: ACM.Google Scholar
  16. Lamport, L. (1981). Password authentication with insecure communication. Communications of the ACM, 24(11), 770–772.CrossRefGoogle Scholar
  17. Liebig, T. (2014). Privacy preserving aggregation of distributed mobility data streams. In Proceedings of the 11th Symposium on Location-Based Services (pp. 86–99).Google Scholar
  18. Liebig, T., Körner, C., & May, M. (2008). Scalable sparse bayesian network learning for spatial applications. In IEEE International Conference on Data Mining Workshops, 2008 (ICDMW’08) (pp. 420–425). IEEE.Google Scholar
  19. Liebig, T., Körner, C., & May, M. (2009). Fast visual trajectory analysis using spatial bayesian networks. In IEEE International Conference on Data Mining Workshops, 2009 (ICDMW’09) (pp. 668–673). IEEE.Google Scholar
  20. Monreale, A., Andrienko, G., Andrienko, N., Giannotti, F., Pedreschi, D., Rinzivillo, S., et al. (2010). Movement data anonymity through generalization. Journal of Transactions on Data Privacy, 3(2), 91–121.Google Scholar
  21. Monreale, A., Wang, W., Pratesi, F., Rinzivillo, S., Pedreschi, D., Andrienko, G., & Andrienko, N. (2013). Privacy-preserving distributed movement data aggregation. In Geographic Information Science at the Heart of Europe. Lecture Notes in Geoinformation and Cartography (pp. 225–245). Berlin: Springer International Publishing.Google Scholar
  22. Muralidhar, K., & Sarathy, R. (2011). Does differential privacy protect terry gross’ privacy? In J. Domingo-Ferrer & E. Magkos (Eds.), Privacy in Statistical Databases (Vol. 6344, pp. 200–209). Lecture Notes in Computer Science. Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
  23. NSA slides explain the PRISM data-collection program. The Washington Post. Available: http://www.washingtonpost.com/wp-srv/special/politics/prism-collection-documents/. [Last accessed: 23 June 2013] (06 June 2013).
  24. Paillier, P. (1999). Public-key cryptosystems based on composite degree residuosity classes. In Proceedings of the 17th International Conference on Theory and Application of Cryptographic Techniques (EUROCRYPT’99) (pp. 223–238). Berlin, Heidelberg: Springer.Google Scholar
  25. Rivest, R. L., Shamir, A., & Adleman, L. (1983). A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM, 26(1), 96–99.CrossRefGoogle Scholar
  26. Schnitzler, F., Liebig, T., Mannor, S., Souto, G., Bothe, S., & Stange, H. (2014). Heterogeneous stream processing for disaster detection and alarming. In IEEE International Conference on Big Data (pp. 914–923). Piscataway: IEEE Press.Google Scholar
  27. Shamir, A. (1979). How to share a secret. Communications of the ACM, 22(22), 612–613.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Artificial Intelligence UnitTU Dortmund UniversityDortmundGermany

Personalised recommendations