AGILE 2015 pp 291-308 | Cite as

Aggregating Spatio-temporal Phenomena at Multiple Levels of Detail

  • Ricardo Almeida Silva
  • João Moura Pires
  • Maribel Yasmina Santos
  • Rui Leal
Chapter
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)

Abstract

Spatio-temporal data are collected at high levels of detail (LoDs). Both spatial and temporal characteristics of data can be expressed at different LoDs. Depending on the phenomenon and the analytical goal, different LoDs can be suitable for a user’s analysis since different LoDs may provide different perceptions of a phenomenon. It is crucial to model spatio-temporal phenomena having in mind that different LoDs can be useful in their analyses. We propose a granularities-based model in order to model spatio-temporal phenomena at multiple LoDs. It defines the concept of LoD and afterwards the atom generalization, granular synthesis and compressed granular syntheses set concepts to express a phenomenon at some LoD into a coarser one. This occurs in a semi-automatic way as the user just needs to define functions that create the compressed granular syntheses sets. A demonstration case was conducted applied to a real dataset about accidents in USA in which the model proposed proved to be useful to reduce the amount and complexity of data when the phenomenon is observed at coarser LoDs than the ones at which data is provided.

Keywords

Granularity Spatio-temporal data Multiple levels of detail 

References

  1. Andrienko, G., et al. (2010). Space, time and visual analytics. International Journal of Geographical Information Science, 24(10), 1577–1600.CrossRefGoogle Scholar
  2. Belussi, A., Combi, C. & Pozzani, G., 2009. Formal and conceptual modeling of spatio-temporal granularities. In Proceedings of the 2009 International Database Engineering & Applications Symposium on—IDEAS ’09 (p. 275). New York, USA: ACM Press.Google Scholar
  3. Bertolotto, M., & Egenhofer, M. J. (2001). Progressive transmission of vector map data over the world wide web. GeoInformatica, 5(4), 345–373.CrossRefGoogle Scholar
  4. Bettini, C., Jajodia, S., & Wang, S. (2000). Time granularities in databases, data mining, and temporal reasoning. Berlin: Springer.Google Scholar
  5. Camossi, E., Bertolotto, M., & Bertino, E. (2006). A multigranular object-oriented framework supporting spatio-temporal granularity conversions. International Journal of Geographical Information Science, 20(5), 511–534.CrossRefGoogle Scholar
  6. Keim, D., et al. (2008). Visual analytics: Definition, process, and challenges. In A. Kerren et al. (Eds.), Information Visualization. Lecture Notes in Computer Science (pp. 154–175). Berlin, Heidelberg: Springer.Google Scholar
  7. Laurini, R. (2014). A conceptual framework for geographic knowledge engineering. Journal of Visual Languages & Computing, 25(1), 2–19.CrossRefGoogle Scholar
  8. Lins, L., Klosowski, J. T., & Scheidegger, C. (2013). Nanocubes for real-time exploration of spatiotemporal datasets. IEEE Transactions on Visualization and Computer Graphics, 19(12), 2456–2465.CrossRefGoogle Scholar
  9. Parent, C., Spaccapietra, S., & Zimányi, E. (2006). The MurMur project: Modeling and querying multi-representation spatio-temporal databases. Information Systems, 31(8), 733–769.CrossRefGoogle Scholar
  10. Parent, C., et al. (2009). Multiple representation modeling. In L. Liu & M. T. Özsu (Eds.), Encyclopedia of database systems (pp. 1844–1849). Berlin: Springer.Google Scholar
  11. Pires, J. M., Silva, R. A., & Santos, M. Y. (2014). Reasoning about space and time: Moving towards a theory of granularities. In Computational Science and Its Applications–ICCSA 2014(pp. 328–343). Berlin: Springer.Google Scholar
  12. Pozzani, G., & Zimányi, E. (2012). Defining spatio-temporal granularities for raster data. In Data Security and Security Data (pp. 96–107). Berlin: Springer.Google Scholar
  13. Stell, J., & Worboys, M. (1998). Stratified map spaces: A formal basis for multi-resolution spatial databases. In Proceedings 8th International Symposium on Spatial Data Handling. Department of Computer Science, Keele University, Staffordshire, UK ST5 5BG (pp. 180–189).Google Scholar
  14. Weibel, R., & Dutton, G. (1999). Generalising spatial data and dealing with multiple representations. Geographical information systems, 1, 125–155.Google Scholar
  15. Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338–353.CrossRefGoogle Scholar
  16. Zhou, X., et al. (2004). Multiresolution spatial databases: Making web-based spatial applications faster. In J. Yu et al. (Eds.), Advanced web technologies and applications SE—5. Lecture Notes in Computer Science (pp. 36–47). Berlin, Heidelberg: Springer.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ricardo Almeida Silva
    • 1
  • João Moura Pires
    • 1
  • Maribel Yasmina Santos
    • 2
  • Rui Leal
    • 3
  1. 1.NOVA-LINCS LabUniversidade Nova de LisboaLisbonPortugal
  2. 2.ALGORITMI Research CentreUniversity of MinhoBragaPortugal
  3. 3.2GiveInsightsLisbonPortugal

Personalised recommendations