Advertisement

Offering Strategies of Wind Power Producers in a Day-Ahead Electricity Market

  • R. Laia
  • H. M. I. Pousinho
  • R. Melício
  • V. M. F. Mendes
  • M. Collares-Pereira
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 450)

Abstract

This paper presents a stochastic optimization-based approach applied to offer strategies of a wind power producer in a day-ahead electricity market. Further from facing the uncertainty on the wind power the market forces wind power producers to face the uncertainty of the market-clearing electricity price. Also, the producer faces penalties in case of being unable to fulfill the offer. An efficient mixed-integer linear program is presented to develop the offering strategies, having as a goal the maximization of profit. A case study with data from the Iberian Electricity Market is presented and results are discussed to show the effectiveness of the proposed approach.

Keywords

Mixed-integer linear programming Stochastic optimization Wind power Offering strategies 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pousinho, H.M.I., Catalão, J.P.S., Mendes, V.M.F.: Offering strategies for a wind power producer considering uncertainty through a stochastic model. In: Proceedings of PMAPS 2012 (2012)Google Scholar
  2. 2.
    Kongnam, C., Nuchprayoon, S.: Feed-in tariff scheme for promoting wind energy generation. In: IEEE Bucharest Power Tech Conference (2009)Google Scholar
  3. 3.
    Bitar, E.Y., Poolla, K.: Selling wind power in electricity markets: the status today, the opportunities tomorrow. In: 2012 American Control Conference, June 27-June 29, Canada (2012)Google Scholar
  4. 4.
    Barros, J., Leite, H.: Feed-in tariffs for wind energy in Portugal: current status and prospective future. Electrical Power Quality and Utilisation (EPQU) (2011)Google Scholar
  5. 5.
    Barros, J., Leite, H.: Feed-in tariffs for wind energy in Portugal: current status and prospective future. Electrical Power Quality and Utilisation (EPQU) (2011)Google Scholar
  6. 6.
    Al-Awami, A.T., El-Sharkawi, M.A.: Coordinated trading of wind and thermal energy. IEEE Transactions on Sustainable Energy 2(3) (2011)Google Scholar
  7. 7.
    Cena, A.: The impact of wind energy on the electricity price and on the balancing power costs: the Spanish case. In: The European Wind Energy Conference (EWEC), Marseille, France, March 2009Google Scholar
  8. 8.
    El-Fouly, T.H.M., Zeineldin, H.H., El-Saadany, E.F., Salama, M.M.A.: Impact of wind generation control strategies, penetration level and installation location on electricity market prices. IET Renewable Power Generation 2(3), 162–169 (2008)CrossRefGoogle Scholar
  9. 9.
    Angarita, J.L., Usaola, J., Martinez-Crespo, J.: Combined hydro wind generation bids in a pool-based electricity market. Energy Policy 79(7), 1038–1046 (2009)Google Scholar
  10. 10.
    Bathurst, G.N., Strbac, G.: Value of combining energy storage and wind in short-term energy and balancing markets. Electric Power Systems Research 67(1), 1–8 (2003)CrossRefGoogle Scholar
  11. 11.
    Gonzalez, J.G., Muela, R.M.R., Santos, L.M., Gonzalez, A.M.: Stochastic joint optimization of wind generation and pumped-storage units in an electricity market. IEEE Transactions on Power Systems 23(2), 460–468 (2008)CrossRefGoogle Scholar
  12. 12.
    Hedman, K., Sheble, G.: Comparing hedging methods for wind power: using pumped storage hydro units vs options purchasing. In: International Conference on Probabilistic Methods Applied to Power Systems PMAPS, pp. 61–66, Stockholm, Sweden (2006)Google Scholar
  13. 13.
    Bathurst, G.N., Weatherill, J., Strbac, G.: Trading wind generation in short term energy markets. IEEE Transactions on Power Systems 17(3), 782–789 (2002)CrossRefGoogle Scholar
  14. 14.
    Matevosyan, J.: Soder, L: Minimization of imbalance cost trading wind power on the short-term power market. IEEE Transactions on Power Systems 21(3), 1396–1404 (2006)CrossRefGoogle Scholar
  15. 15.
    Pinson, P., Chevallier, C., Kariniotakis, G.N.: Trading wind generation from short-term probabilistic forecasts of wind power. IEEE Transactions on Power Systems 22(3), 1148–1156 (2007)CrossRefGoogle Scholar
  16. 16.
    Ruiz, P.A., Philbrick, C.R.,Sauer, P.W.: Wind power day-ahead uncertainty management through stochastic unit commitment policies. In: Proc. IEEE/PES 2009 Power Syst. Conf. Expo. (PSCE 2009), pp.1–9 (2009)Google Scholar
  17. 17.
    Fan, S., Liao, J.R.: Yokoyama, R, Chen, L.N., Lee, W. J.: Forecasting the wind generation using a two-stage network based on meteorological information. IEEE Trans. Energy Convers. 24, 474–482 (2009)CrossRefGoogle Scholar
  18. 18.
    Kusiak, A., Zheng, H.Y., Song, Z.: Wind farm power prediction: A data-mining approach. Wind Energy 12, 275–293 (2009)CrossRefGoogle Scholar
  19. 19.
    Catalão, J.P.S., Pousinho, H.M.I., Mendes, V.M.F.: An artificial neural network approach for short-term wind power forecasting in Portugal. Eng. Int. Syst. 17, 5–11 (2009)Google Scholar
  20. 20.
    Catalão, J.P.S., Mariano, S.J.P.S., Mendes, V. M. F., Ferreira, L. A. F. M.: Short-term electricity prices forecasting in a competitive market: a neural network approach. Electr. Power Syst. Res. 77, 1297–1304 (2007)Google Scholar
  21. 21.
    Coelho, L.D., Santos, A.A.P.: A RBF neural network model with GARCH errors: Application to electricity price forecasting. Electr. Power Syst. Res. 81, 74–83 (2011)CrossRefGoogle Scholar
  22. 22.
    Amjady, N., Daraeepour, A.: Mixed price and load forecasting of electricity markets by a new iterative prediction method. Electr. Power Syst. Res. 79, 1329–1336 (2009)CrossRefGoogle Scholar
  23. 23.
    Floudas, C.A., Xiaoxia, L.: Mixed integer linear programming in process scheduling: modeling, algorithms, and applications. Annals of Operations Research 139, 131–162 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    http://www.esios.ree.es/web-publica/Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2015

Authors and Affiliations

  • R. Laia
    • 1
    • 2
  • H. M. I. Pousinho
    • 1
    • 2
  • R. Melício
    • 1
    • 2
  • V. M. F. Mendes
    • 1
    • 3
  • M. Collares-Pereira
    • 1
  1. 1.University of ÉvoraÉvoraPortugal
  2. 2.IDMEC/LAETA, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal
  3. 3.Instituto Superior of Engenharia de LisboaLisbonPortugal

Personalised recommendations