Advertisement

Study of a Novel Software Constant Weight Implementation

  • Victor Servant
  • Nicolas Debande
  • Houssem Maghrebi
  • Julien Bringer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8968)

Abstract

While in the early 2000’s lots of research was focused on Differential Power Analysis of first and second-order, it seems the recent trend is of even higher-order. As this order grows, countermeasures such as masking need to be designed in a more generic way. In this paper, we introduce a new constant weight implementation of the AES extending the idea of the software dual-rail countermeasure proposed by Hoogvorst et al. at COSADE 2011. Notably, we illustrate its practicality on 16-bit microcontroller in terms of speed and complexity. This countermeasure applies to all devices that leak a function of the Hamming weight of the internal variables. Under this assumption, our constant weight implementation is theoretically inherently resistant to side-channel attacks of any order. A security evaluation is conducted to analyze its resistance when the leakage slightly deviates from the Hamming weight assumption. It reveals that the countermeasure remains as good as several well-known masking countermeasures. Moreover, the proposed countermeasure offers the possibility to detect some classes of faults.

Keywords

Constant weight Information theoretic analysis Side-channel analysis AES Software implementation 

Notes

Acknowledgments

This work has been partially funded by the ANR projects E-MATA HARI and SPACES.

References

  1. 1.
    Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  2. 2.
    Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  3. 3.
    Coron, J.-S.: Higher order masking of look-up tables. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 441–458. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  4. 4.
    Doget, J., Prouff, E., Rivain, M., Standaert, F.-X.: Univariate side channel attacks and leakage modeling. J. Crypt. Eng. 1(2), 123–144 (2011)CrossRefGoogle Scholar
  5. 5.
    Genelle, L., Prouff, E., Quisquater, M.: Thwarting higher-order side channel analysis with additive and multiplicative maskings. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 240–255. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  6. 6.
    Gierlichs, B., Schmidt, J.-M., Tunstall, M.: Infective computation and dummy rounds: fault protection for block ciphers without check-before-output. Cryptology ePrint Archive, Report 2012678 (2012). http://eprint.iacr.org
  7. 7.
    Grosso, V., Standaert, F.-X., Prouff, E.: Low entropy masking schemes, revisited. In: Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 33–43. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  8. 8.
    Han, Y., Zhou, Y., Liu, J.: Securing lightweight block cipher against power analysis attacks. In: Zhang, Y. (ed.) Future Wireless Networks and Information Systems. LNEE, vol. 143, pp. 379–390. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  9. 9.
    Herbst, C., Oswald, E., Mangard, S.: An AES smart card implementation resistant to power analysis attacks. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006. LNCS, vol. 3989, pp. 239–252. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  10. 10.
    Hoogvorst, P., Duc, G., Danger, J.-L.: Software implementation of dual-rail representation. In: COSADE (2011)Google Scholar
  11. 11.
    Kim, H., Hong, S., Lim, J.: A fast and provably secure higher-order masking of AES S-box. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 95–107. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  12. 12.
    Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  13. 13.
    Maghrebi, H., Carlet, C., Guilley, S., Danger, J.-L.: Optimal first-order masking with linear and non-linear bijections. In: Mitrokotsa, A., Vaudenay, S. (eds.) AFRICACRYPT 2012. LNCS, vol. 7374, pp. 360–377. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  14. 14.
    Nassar, M., Souissi, Y., Guilley, S., Danger, J.-L.: RSM: a small and fast countermeasure for AES, secure against first- and second-order zero-offset SCAs. In: DATE (TRACK A: “Application Design”, TOPIC A5: “Secure Systems”), pp. 1173–1178. IEEE Computer Society, Dresden, Germany, 12–16 March 2012Google Scholar
  15. 15.
    NIST/ITL/CSD. Advanced Encryption Standard (AES). FIPS PUB 197, November 2001. http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
  16. 16.
    Oswald, E., Schramm, K.: An efficient masking scheme for AES software implementations. In: Song, J.-S., Kwon, T., Yung, M. (eds.) WISA 2005. LNCS, vol. 3786, pp. 292–305. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  17. 17.
    Peeters, E., Standaert, F.-X., Donckers, N., Quisquater, J.-J.: Improved higher-order side-channel attacks with FPGA experiments. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 309–323. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  18. 18.
    Peeters, É., Standaert, F.-X., Quisquater, J.-J.: Power and electromagnetic analysis: Improved model, consequences and comparisons. Integ. VLSI J. 40, 52–60 (2007). doi: 10.1016/j.vlsi.2005.12.013. Embedded Cryptographic HardwareCrossRefGoogle Scholar
  19. 19.
    Piret, G., Roche, T., Carlet, C.: PICARO – a block cipher allowing efficient higher-order side-channel resistance. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341, pp. 311–328. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  20. 20.
    Preneel, B., Takagi, T. (eds.): CHES 2011. LNCS, vol. 6917. Springer, Heidelberg (2011) zbMATHGoogle Scholar
  21. 21.
    Prouff, E., Rivain, M., Bévan, R.: Statistical analysis of second order differential power analysis. Cryptology ePrint Archive, Report 2010/646 (2010). http://eprint.iacr.org/
  22. 22.
    Rauzy, P., Guilley, S., Najm, Z.: Formally proved security of assembly code against leakage. IACR Cryptol. ePrint Arch. 2013, 554 (2013)Google Scholar
  23. 23.
    Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  24. 24.
    Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  25. 25.
    Veyrat-Charvillon, N., Standaert, F.-X.: Mutual information analysis: how, when and why? In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 429–443. Springer, Heidelberg (2009) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Victor Servant
    • 1
  • Nicolas Debande
    • 2
  • Houssem Maghrebi
    • 1
  • Julien Bringer
    • 1
  1. 1.SAFRAN MorphoOsnyFrance
  2. 2.SERMA Technologies (ITSEF)PessacFrance

Personalised recommendations