Advertisement

Evidence of a Larger EM-Induced Fault Model

  • S. Ordas
  • L. Guillaume-Sage
  • K. Tobich
  • J.-M. Dutertre
  • P. Maurine
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8968)

Abstract

Electromagnetic waves have been recently pointed out as a medium for fault injection within circuits featuring cryptographic modules. Indeed, it has been experimentally demonstrated by A. Dehbaoui et al. [3] that an electromagnetic pulse, produced with a high voltage pulse generator and a probe similar to that used to perform EM analyses, was susceptible to create faults exploitable from a cryptanalysis viewpoint. An analysis of the induced faults [4] revealed that they originated from timing constraint violations.

This paper experimentally demonstrates that EM injection, performed with enhanced probes is very local and can produce not only timing faults but also bit-set and bit-reset faults. This result clearly extends the range of the threats associated with EM fault injection.

Keywords

Integrate Circuit Advanced Encryption Standard Clock Signal Clock Period Fault Injection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bayon, P., Bossuet, L., Aubert, A., Fischer, V., Poucheret, F., Robisson, B., Maurine, P.: Contactless electromagnetic active attack on ring oscillator based true random number generator. In: Schindler, W., Huss, S.A. (eds.) COSADE 2012. LNCS, vol. 7275, pp. 151–166. Springer, Heidelberg (2012) Google Scholar
  2. 2.
    Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryptographic protocols for faults (extended abstract). In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 37–51. Springer, Heidelberg (1997) Google Scholar
  3. 3.
    Dehbaoui, A., Dutertre, J.-M., Robisson, B., Orsatelli, P., Maurine, P., Tria, A.: Injection of transient faults using electromagnetic pulses -practical results on a cryptographic system. IACR Cryptology ePrint Archive, 2012:123 (2012)Google Scholar
  4. 4.
    Dehbaoui, A., Dutertre, J.-M., Robisson, B., Tria, A.: Electromagnetic transient faults injection on a hardware and a software implementations of AES. In: FDTC, pp. 7–15 (2012)Google Scholar
  5. 5.
    Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: concrete results. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 251–261. Springer, Heidelberg (2001) Google Scholar
  6. 6.
    Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996) Google Scholar
  7. 7.
    Maurine, P.: Techniques for em fault injection: equipments and experimental results. In: FDTC, pp. 3–4 (2012)Google Scholar
  8. 8.
    Omarouayache, R., Raoult, J., Jarrix, S., Chusseau, L., Maurine, P.: Magnetic microprobe design for em fault attackmagnetic microprobe design for EM fault attack. In: EMC Europe (2013)Google Scholar
  9. 9.
    Poucheret, F., Tobich, K., Lisart, M., Chusseau, L., Robisson, B., Maurine, P.: Local and direct EM injection of power into CMOS integrated circuits. In: FDTC, pp. 100–104 (2011)Google Scholar
  10. 10.
    Schmidt, J.-M., Hutter, M.: Optical and EM fault-attacks on CRT-based RSA: concrete results. In: Posch, J.W.K.C. (ed.) Austrochip 2007, 15th Austrian Workhop on Microelectronics, Proceedings, Graz, Austria, 11 October 2007, pp. 61–67. Verlag der Technischen Universität Graz (2007)Google Scholar
  11. 11.
    Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: Kaliski, B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 2–12. Springer, Heidelberg (2003) Google Scholar
  12. 12.
    Tobich, K., Maurine, P., Liardet, P.-Y., Lisart, M., Ordas, T.: Voltage spikes on the substrate to obtain timing faults. In: DSD, pp. 483–486 (2013)Google Scholar
  13. 13.
    Zussa, L., Dehbaoui, A., Tobich, K., Dutertre, J.-M., Maurine, P., Guillaume-Sage, L., Clédière, J., Tria, A.: Efficiency of a glitch detector against electromagnetic fault injection. In: DATE, pp. 1–6 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • S. Ordas
    • 2
  • L. Guillaume-Sage
    • 2
  • K. Tobich
    • 2
  • J.-M. Dutertre
    • 1
  • P. Maurine
    • 1
    • 2
  1. 1.CEA-TECH and ENSMSECentre Microélectronique de Provence G. CharpakGardanneFrance
  2. 2.LIRMM-University of MontpellierMontpellierFrance

Personalised recommendations