Advertisement

Algorithms for Outsourcing Pairing Computation

  • Aurore Guillevic
  • Damien Vergnaud
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8968)

Abstract

We address the question of how a computationally limited device may outsource pairing computation in cryptography to another, potentially malicious, but much more computationally powerful device. We introduce two new efficient protocols for securely outsourcing pairing computations to an untrusted helper. The first generic scheme is proven computationally secure (and can be proven statistically secure at the expense of worse performance). It allows various communication-efficiency trade-offs. The second specific scheme – for optimal Ate pairing on a Barreto-Naehrig curve – is unconditionally secure, and do not rely on any hardness assumptions. Both protocols are more efficient than the actual computation of the pairing by the restricted device and in particular they are more efficient than all previous proposals.

Keywords

Elliptic Curve Smart Card Powerful Device Public Parameter Security Notion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors thank Olivier Blazy, Renaud Dubois and Fabien Laguillaumie for their fruitful comments. This work was supported in part by the French ANR-12-INSE-0014 SIMPATIC Project.

References

  1. 1.
    Aranha, D.F., Gouvêa, C.P.L.: RELIC is an Efficient LIbrary for Cryptography, September 2013. http://code.google.com/p/relic-toolkit/
  2. 2.
    Aranha, D.F., Barreto, P.S.L.M., Longa, P., Ricardini, J.E.: The realm of the pairings. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282, pp. 3–25. Springer, Heidelberg (2014) Google Scholar
  3. 3.
    Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg (2006) Google Scholar
  4. 4.
    Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001) Google Scholar
  5. 5.
    Bos, J.W., Costello, C., Naehrig, M.: Exponentiating in pairing groups. Cryptology ePrint Archive, Report 2013/458 (2013)Google Scholar
  6. 6.
    Boyko, V., Peinado, M., Venkatesan, R.: Speeding up discrete log and factoring based schemes via precomputations. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 221–235. Springer, Heidelberg (1998) Google Scholar
  7. 7.
    Canard, S., Devigne, J., Sanders, O.: Delegating a pairing can be both secure and efficient. In: Boureanu, I., Owesarski, P., Vaudenay, S. (eds.) ACNS 2014. LNCS, vol. 8479, pp. 549–565. Springer, Heidelberg (2014) Google Scholar
  8. 8.
    Chevallier-Mames, B., Coron, J.-S., McCullagh, N., Naccache, D., Scott, M.: Secure delegation of elliptic-curve pairing. Cryptology ePrint Archive, Report 2005/150 (2005)Google Scholar
  9. 9.
    Chevallier-Mames, B., Coron, J.-S., McCullagh, N., Naccache, D., Scott, M.: Secure delegation of elliptic-curve pairing. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny, J. (eds.) CARDIS 2010. LNCS, vol. 6035, pp. 24–35. Springer, Heidelberg (2010) Google Scholar
  10. 10.
    Coron, J.-S., M’Raïhi, D., Tymen, C.: Fast generation of pairs (\(k\),[\(k\)]\(P\)) for Koblitz elliptic curves. In: Vaudenay, S., Youssef, A.M. (eds.) SAC 2001. LNCS, vol. 2259, pp. 151–164. Springer, Heidelberg (2001) Google Scholar
  11. 11.
    Fouque, P.-A., Tibouchi, M.: Indifferentiable hashing to Barreto–Naehrig curves. In: Hevia, A., Neven, G. (eds.) LatinCrypt 2012. LNCS, vol. 7533, pp. 1–17. Springer, Heidelberg (2012) Google Scholar
  12. 12.
    Girault, M., Lefranc, D.: Server-aided verification: theory and practice. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 605–623. Springer, Heidelberg (2005) Google Scholar
  13. 13.
    Granger, R., Scott, M.: Faster squaring in the cyclotomic subgroup of sixth degree extensions. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 209–223. Springer, Heidelberg (2010) Google Scholar
  14. 14.
    Joux, A.: A one round protocol for tripartite Diffie-Hellman. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 385–394. Springer, Heidelberg (2000) Google Scholar
  15. 15.
    Kachisa, E.J., Schaefer, E.F., Scott, M.: Constructing Brezing-Weng pairing-friendly elliptic curves using elements in the cyclotomic field. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 126–135. Springer, Heidelberg (2008) Google Scholar
  16. 16.
    Nguyen, P.Q., Shparlinski, I.E., Stern, J.: Distribution of modular sums and the security of the server aided exponentiation. In: Lam, K.-Y., Shparlinski, I., Wang, H., Xing, C. (eds.) Cryptography and Computational Number Theory. Progress in Computer Science and Applied Logic, vol. 20, pp. 331–342. Birkhäuser, Basel (2001) Google Scholar
  17. 17.
    Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997) Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Département d’InformatiqueÉcole normale supérieureParisFrance
  2. 2.InriaParisFrance
  3. 3.École Polytechnique/LIXPalaiseauFrance

Personalised recommendations